

Smart Contract Audit
Report for Medley

Finance

Testers

1. Or Duan
2. Avigdor Sason Cohen
3. Jakub Heba

1

Table of Contents

Table of Contents 2
Management Summary 3
Risk Methodology 4
Vulnerabilities by Risk 5
Approach 6

Introduction 6

Scope Overview 6

Scope Validation 6

Threat Model 6

Protocol Overview 7
Protocol Introduction 7

Security Evaluation 8
Security Assessment Findings 15

Inverted Token Validation 15

Decimal Precision Risk in Swaps 16

No Recovery Path for Failed Multi-Step Operations 17

Zero Rent-Exempt Lamports for Account Creation 19

Infrequent Index Valuation Updates 21

Token standard mismatch in swap operations 22

Missing Slippage Protection in Jupiter Swaps 23

Excessive Staleness Window 24

No Admin Rotation 25

No Emergency Pause 26

Missing Index Token Verification 27

No Weight Validation during Rebalancing 28

Unbounded Fee 29

Incorrect Token-2022 Implementation 30

Fixed Fee Can Underflow 31

Duplicate Event Emission 32

Leftover Function 33

Misleading Comment 34

Unexplained ‘Magic’ Number 35

Unused Program State 36

Unused Parameter in swap_on_jupiter<'_>(...) 37

Deprecated Findings 38

Premature Token Minting 38

2

Risk of Race Conditions in Swap Operations 40

Improper Error Handling in transfer hook 41

3

Management Summary

Medley Finance contacted Sayfer to perform a security audit on their Solana programs in 03/2025.

This report includes a review of the Medley Finance Solana smart contracts, developed using Rust
and Anchor. The review covers architectural structure, authority models, CPI interactions, SPL token
usage, and a list of implementation and security improvement recommendations. All findings and
risk ratings are framed exclusively around Solana’s PDA authority model, CPI patterns, rent-exempt
account requirements, and compute-unit limits.

Over the research period of 4 weeks, we discovered 24 vulnerabilities. 3 of them are marked as
critical, as deploying the contract as-is may lead to direct loss of funds and functionality.

Several fixes should be implemented following the report, to ensure the system's security posture is
competent.

After a review by the Sayfer team, we certify that all the security issues mentioned in this
report have been addressed by the Medley Finance team.

4

Risk Methodology
At Sayfer, we are committed to delivering high-quality smart contract audits tailored to the
blockchain execution environment under review. For Solana programs, our risk model considers the
architectural distinctions of Solana's runtime.

Our risk assessment is based on two key factors: IMPACT and LIKELIHOOD. Impact refers to the
potential harm resulting from an issue (e.g., lamport loss, account corruption, program failure).
Likelihood considers factors such as the complexity of the program, frequency of user interaction,
and surface exposure via cross-program invocations (CPIs).

Given Solana's parallel transaction execution model, compute budget limits, and strict account
ownership model, the following additional considerations influence risk:

● Rent-exemption and lamport management for persistent accounts.
● BPF compute budget exhaustion or CPI depth errors.
● Account deserialization failures and runtime constraints.
● Authority misuse or PDA derivation conflicts.

Risk is defined as follows:

 Overall Risk Security

 HIGH Medium High Critical

MEDIUM Low Medium High

LOW Informational Low Medium

 LOW MEDIUM HIGH

 LIKELIHOOD

5

Vulnerabilities by Risk

Risk Low Medium High Critical Informational

of issues 4 6 4 5 5

6

Approach

Introduction
Medley Finance contacted Sayfer to perform a security audit on their solana programs.

This report documents the research carried out by Sayfer targeting the selected resources defined
under the research scope. Particularly, this report displays the security posture review for the
aforementioned contracts.

Scope Overview
Together with the client team we defined the following contract as the scope of the project.

Contract SHA-256

programs/dmac_contracts/src/lib.rs 7a3d9865045c550ca4f073be9cc8ddd55c397608389db2de0
1880ac7ef87185a

programs/dmac_contracts/src/event.rs

8fdc3efd8f7ad9032b4fb1910f3adec4e41e677e5d5a7a778
af0642eb3c470a1

programs/dmac_contracts/src/jidl.rs

12821671c28103ba3d44e09222b21105cc7c956680ae856b4
567586606a8db64

Our tests were performed from 26/03/2025 to 16/04/2025.

Scope Validation
We began by ensuring that the scope defined to us by the client was technically logical.
Deciding what scope is right for a given system is part of the initial discussion.

Threat Model

The primary threat to the Medley Finance protocol is the unauthorized access or manipulation of
program-controlled accounts resulting in the theft of lamports or SPL tokens.

Solana-specific threats include:

● CPI Injection: Malicious input to cross-program invocations leading to unauthorized
instruction execution.

7

● PDA Mismanagement: Unsafe or static seeds leading to predictable or hijackable
program-derived addresses.

● Missing Rent-Exemption: Accounts deleted due to insufficient lamports, leading to loss of
critical program state.

● Stale Oracle Data: Use of outdated price feeds resulting in unfair swaps or index valuation
manipulation.

● Token-2022 Compatibility Failures: Incorrect assumptions around token program
interfaces may result in failed transfers or broken accounting.

● Lack of Slippage Controls: Unchecked swap output allows sandwich or front-running
exploitation.

● Race-condition risk due to parallel execution on identical mutable accounts.
● Loss of program state if any required account falls below rent-exempt balance.
● Compute-budget exhaustion leading to transaction failure or denial-of-service.

Additionally, Solana's parallelized transaction model introduces concurrency considerations. If two
users trigger operations that depend on mutable shared accounts (e.g., index state), a lack of
atomicity or state locking could lead to inconsistent program behavior or race conditions.

8

Protocol Overview

Protocol Introduction
Medley is a decentralized finance (DeFi) protocol designed to provide users with advanced financial
tools and services within the blockchain ecosystem. It offers features such as decentralized lending,
borrowing, and yield optimization strategies, enabling users to maximize their crypto assets'
potential. By leveraging smart contracts, Medley ensures transparency, security, and efficiency in its
operations, aiming to democratize access to financial services and foster a more inclusive financial
system.

9

Security Evaluation
The following test cases were the guideline while auditing the system. This checklist is a modified
version of the SCSVS v1.2, with improved grammar, clarity, conciseness, and additional criteria.
Where there is a gap in the numbering, an original criterion was removed. Criteria that are marked
with an asterisk were added by us.

Architecture,
Design and

Threat
Modeling

Test Name

G1.2 Every introduced design change is preceded by threat modeling.

G1.3
The documentation clearly and precisely defines all trust boundaries in the contract
(trusted relations with other contracts and significant data flows).

G1.4
The SCSVS, security requirements or policy is available to all developers and
testers.

G1.5 The events for the (state changing/crucial for business) operations are defined.

G1.6
The project includes a mechanism that can temporarily stop sensitive
functionalities in case of an attack. This mechanism should not block users’ access
to their assets (e.g. tokens).

G1.7
The amount of unused cryptocurrencies kept on the contract is controlled and at
the minimum acceptable level so as not to become a potential target of an attack.

G1.8
If any ‘catch-all’ CPI handler (e.g., Anchor’s default route) is publicly reachable, it is
included in the threat model.

G1.9
Business logic is consistent. Important changes in the logic should be applied in all
contracts.

G1.10 Automatic code analysis tools are employed to detect vulnerabilities.

G1.11
The program is compiled with the latest stable Solana SDK version (anchor +
solana-program)

G1.12
When using an external implementation of a contract, the most recent version is
used.

G1.13
When functions are overridden to extend functionality, the super keyword is used
to maintain previous functionality.

G1.14 The order of inheritance is carefully specified.
G1.15 There is a component that monitors contract activity using events.
G1.16 The threat model includes whale transactions.

G1.17
The leakage of one private key does not compromise the security of the entire
project.

10

https://github.com/securing/SCSVS/tree/master/1.2

Policies and
Procedures

Test Name

G2.2
The system's security is under constant monitoring (e.g. the expected level of
funds).

G2.3
There is a policy to track new security vulnerabilities and to update libraries to the
latest secure version.

G2.4
The security department can be publicly contacted and that the procedure for
handling reported bugs (e.g., thorough bug bounty) is well-defined.

G2.5 The process of adding new components to the system is well defined.

G2.6
The process of major system changes involves threat modeling by an external
company.

G2.7
The process of adding and updating components to the system includes a security
audit by an external company.

G2.8 In the event of a hack, there’s a clear and well known mitigation procedure in place.

G2.9
The procedure in the event of a hack clearly defines which persons are to execute
the required actions.

G2.10
The procedure includes alarming other projects about the hack through trusted
channels.

G2.11 A private key leak mitigation procedure is defined.

Upgradability Test Name

G3.2
Before upgrading, an emulation is made in a fork of the main network and
everything works as expected on the local copy.

G3.3
The upgrade process is executed by a multisig contract where more than one
person must approve the operation.

G3.4
Timelocks are used for important operations so that the users have time to
observe upcoming changes (please note that removing potential vulnerabilities in
this case may be more difficult).

G3.5 initialize() can only be called once.

G3.6
initialize() can only be called by an authorized role through Anchor access-control
macros (e.g., #[access_control(admin_only)]).

G3.7 The update process is done in a single transaction so that no one can front-run it.
G3.8 Upgradeable contracts have reserved gap on slots to prevent overwriting.

G3.9
The number of reserved (as a gap) slots has been reduced appropriately if new
variables have been added.

G3.10
There are no changes in the order in which the contract state variables are
declared, nor their types.

G3.11
New values returned by the functions are the same as in previous versions of the
contract (e.g. owner(), balanceOf(address)).

11

G3.12 The implementation is initialized.
G3.13 The implementation can't be destroyed.

Business Logic Test Name

G4.2
The contract logic and protocol parameters implementation corresponds to the
documentation.

G4.3
The business logic proceeds in a sequential step order and it is not possible to skip
steps or to do it in a different order than designed.

G4.4 The contract has correctly enforced business limits.

G4.5
The business logic does not rely on the values retrieved from untrusted contracts
(especially when there are multiple calls to the same contract in a single flow).

G4.6 The business logic does not rely on the contract’s balance (e.g., balance == 0).
G4.7 Sensitive operations do not depend on block data (e.g., block hash, timestamp).

G4.8
The contract uses mechanisms that mitigate transaction-ordering (front-running)
attacks (e.g. pre-commit schemes).

G4.9
The contract does not send funds automatically, but lets users withdraw funds in
separate transactions instead.

Access Control Test Name

G5.2
The principle of the least privilege is upheld. Other contracts should only be able to
access functions and data for which they possess specific authorization.

G5.3
New contracts with access to the audited contract adhere to the principle of
minimum rights by default. Contracts should have a minimal or no permissions
until access to the new features is explicitly granted.

G5.4
The creator of the contract complies with the principle of the least privilege and
their rights strictly follow those outlined in the documentation.

G5.5
The contract enforces the access control rules specified in a trusted contract,
especially if the dApp client-side access control is present and could be bypassed.

G5.6 Calls to external contracts are only allowed if necessary.

G5.7
Modifier code is clear and simple. The logic should not contain external calls to
untrusted contracts.

G5.8
All user and data attributes used by access controls are kept in trusted contracts
and cannot be manipulated by other contracts unless specifically authorized.

G5.9 the access controls fail securely, including when a revert occurs.

G5.10
If the input (function parameters) is validated, the positive validation approach
(whitelisting) is used where possible.

Communication Test Name

12

G6.2
Libraries that are not part of the application (but the smart contract relies on to
operate) are identified.

G6.3
Cross-program invocations (CPIs) to untrusted programs are prohibited unless
account constraints are strictly validated.

G6.4
Third-party programs do not override error handling or message passing in a way
that obscures on-chain logs.

G6.5
CPIs are validated against expected program IDs and account constraints before
invocation.

G6.6
The result of each CPI (including returned data) is checked and errors are bubbled
up.

G6.7
Program verifies the signer / writable account metas supplied to each instruction
and never relies on sysvar::instructions order alone.

Arithmetic Test Name

G7.2
All arithmetic respects Rust’s checked/unwrapped semantics, and explicit panics
are avoided.

G7.3
Any unchecked {} arithmetic blocks in Rust do not introduce wrapping or panic
conditions.

G7.4
Extreme values (e.g. maximum and minimum values of the variable type) are
considered and do not change the logic flow of the contract.

G7.5 Non-strict inequality is used for balance equality.
G7.6 Correct orders of magnitude are used in the calculations.
G7.7 In calculations, multiplication is performed before division for accuracy.

G7.8
The contract does not assume fixed-point precision and uses a multiplier or store
both the numerator and denominator.

Denial of
Service

Test Name

G8.2 The contract does not iterate over unbound loops.
G8.3 The business logic isn't blocked if an actor (e.g. contract, account, oracle) is absent.

G8.4
The business logic does not disincentivize users to use contracts (e.g. the cost of
transaction is higher than the profit).

G8.5 Expressions of functions assert or require have a passing variant.
G8.6 There are no costly operations in a loop.
G8.7 There are no calls to untrusted contracts in a loop.

G8.8
If there is a possibility of suspending the operation of the contract, it is also
possible to resume it.

G8.9
If whitelists and blacklists are used, they do not interfere with normal operation of
the system.

G8.10 No DoS via compute unit exhaustion, account size overflow, or account lock

13

contention.

Blockchain Data Test Name

G9.2
Any saved data in contracts is not considered secure or private (even private
variables).

G9.3
No confidential data is stored in the blockchain (passwords, personal data, token
etc.).

G9.4
Contracts do not use string literals as keys for mappings. Global constants are used
instead to prevent Homoglyph attack.

G9.5
Contract does not trivially generate pseudorandom numbers based on the
information from blockchain (e.g. seeding with the block number).

Compute-Unit

Usage and
Limitations

Test Name

G10.2
Compute-unit usage is anticipated, defined and has clear limitations that cannot be
exceeded.

G10.3
Program logic does not depend on hard-coded compute budgets or lamport fee
assumptions.

Clarity and
Readability

Test Name

G11.2 The logic is clear and modularized in multiple simple contracts and functions.

G11.3
Each contract has a short 1-2 sentence comment that explains its purpose and
functionality.

G11.4
Off-the-shelf implementations are used, this is made clear in comment. If these
implementations have been modified, the modifications are noted throughout the
contract.

G11.5
The inheritance order is taken into account in contracts that use multiple
inheritance and shadow functions.

G11.6
Where possible, contracts use existing tested code (e.g. token contracts or
mechanisms like ownable) instead of implementing their own.

G11.7 Consistent naming patterns are followed throughout the project.
G11.8 Variables have distinctive names.
G11.9 All storage variables are initialized.

G11.10 Functions with specified return type return a value of that type.
G11.11 All functions and variables are used.
G11.12 require is used instead of revert in if statements.
G11.13 The assert function is used to test for internal errors and the require function is

14

used to ensure a valid condition in input from users and external contracts.
G11.14 Assembly code is only used if necessary.

Test Coverage Test Name

G12.2 Abuse narratives detailed in the threat model are covered by unit tests.

G12.3
Sensitive functions in verified contracts are covered with tests in the development
phase.

G12.4
Implementation of verified contracts has been checked for security vulnerabilities
using both static and dynamic analysis.

G12.5 Contract specification has been formally verified.

G12.6
The specification and results of the formal verification is included in the
documentation.

Decentralized

Finance
Test Name

G14.1
The lender's contract does not assume its balance (used to confirm loan
repayment) to be changed only with its own functions.

G14.2
Functions that move lender balances are protected against CPI chaining that could
manipulate balances during flash-loan-style operations on Solana.

G14.3
Flash loan functions can only call predefined functions on the receiving contract. If
it is possible, define a trusted subset of contracts to be called. Usually, the sending
(borrowing) contract is the one to be called back.

G14.4

If it includes potentially dangerous operations (e.g. sending back more SOL/SPL
tokens than borrowed), the receiver's function that handles borrowed SOL or
tokens can be called only by the pool and within a process initiated by the receiving
contract’s owner or another trusted source (e.g. multisig).

G14.5

Calculations of liquidity pool share are performed with the highest possible
precision (e.g. if the contribution is calculated for SOL it should be done with 9 digit
precision - for lamports). The dividend must be multiplied by the 10 to the power of
the number of decimal digits (e.g. dividend * 10^9 / divisor).

G14.6
Rewards cannot be calculated and distributed within the same function call that
deposits tokens (it should also be defined as non-re-entrant). This protects from
momentary fluctuations in shares.

G14.7

Governance contracts are protected from flash loan attacks. One possible
mitigation technique is to require the process of depositing governance tokens and
proposing a change to be executed in different transactions included in different
blocks.

G14.8
When using on-chain oracles, contracts are able to pause operations based on the
oracles’ result (in case of a compromised oracle).

15

G14.9

External contracts (even trusted ones) that are allowed to change the attributes of
a project contract (e.g. token price) have the following limitations implemented:
thresholds for the change (e.g. no more/less than 5%) and a limit of updates (e.g.
one update per day).

G14.10
Contract attributes that can be updated by the external contracts (even trusted
ones) are monitored (e.g. using events) and an incident response procedure is
implemented (e.g. during an ongoing attack).

G14.11
Complex math operations that consist of both multiplication and division
operations first perform multiplications and then division.

G14.12
When calculating swap prices (e.g. SOL ↔ SPL token) the numerator and
denominator are multiplied by reserves, as done in constant-product AMMs on
Solana (e.g., Orca).

16

Security Assessment Findings

Inverted Token Validation

ID SAY-01

Status Fixed

Risk Critical

Business
Impact

The inverted require statement will reject legitimate token swaps while accepting
incorrect ones, completely breaking the core token swapping functionality and
allowing attackers to swap arbitrary tokens not included in the index.

Location - lib.rs
- swap_to_tkn(Context<SwapToTkn>, Vec<u8>)
- swap_to_sol(Context<SwapToSol>, u64, Vec<u8>)

Description The code implements an inverted comparison operator when validating token mints
during swap operations. Instead of checking that the provided token matches the
expected one in the index, it requires them to be different.

● lib.rs:412-415, 662-665
require!(

 index_info.index_tokens[token_index].mint !=

expected_token_mint.key(),

 ErrorCode::IncorrectTokenMint

);

Mitigation Invert the comparison operator from != to == to correctly validate that the token
being swapped matches the expected token.

17

Decimal Precision Risk in Swaps

ID SAY-02

Status Fixed

Risk Critical

Business
Impact

The failure to account for token decimal precision will cause calculation issues when
handling tokens with non-standard decimal places, leading to direct and substantial
fund loss for users and the protocol.

Location - lib.rs; swap_to_sol(Context<SwapToSol>, u64, Vec<u8>)

Description swap_to_sol(...) accepts an external token_amount_in_decimals parameter
and uses it directly in token transfers without any validation or adjustment based on
the token's decimal precision.

This is problematic because Solana tokens have widely varying decimal precisions -
SOL uses 9 decimals, USDC uses 6, and many bridged tokens use 18 decimals. When
processing a token with 18 decimals as if it had 9, amounts would be off by a factor
of 10^9 - a billion times too large or too small.

This mathematical miscalculation is deterministic and guaranteed to occur
whenever tokens with non-standard decimals are processed.

Mitigation Make sure that the protocol accounts for token decimal precision by modifying the
IndexToken struct to store decimal information and implementing appropriate
normalization when calculating transfer amounts. Retrieve this information when
tokens are added to the index and incorporate decimal-aware calculations
throughout all token transfer operations.

18

No Recovery Path for Failed Multi-Step Operations

ID SAY-03

Status Fixed

Risk Critical

Business
Impact

Funds can become permanently locked in intermediate PDAs if swap operations fail
midway through execution, with no mechanism to recover these funds in case of
network disruptions or other failures.

Location - lib.rs
- swap_to_tkn(Context<SwapToTkn>, Vec<u8>)
- rebalance_index(Context<RebalanceIndex>, u64,

Vec<u8>)

Description The protocol implements complex multi-step operations that span multiple
transactions, but provides no recovery mechanism if these operations fail part way
through. For example, in swap_to_tkn(...), funds are transferred to temporary
accounts before swaps are executed, but if these swaps fail, there's no way to
recover the transferred funds.

● lib.rs:430-447
invoke_signed(

 &transfer(

 &ctx.accounts.program_authority_pda.key(),

 &ctx.accounts.wsol_token_account.key(),

 // swap_to_tkn_info.sol_to_swap,

 sol_to_swap,

),

 &[

ctx.accounts.program_authority_pda.to_account_info().clone(),

 ctx.accounts.wsol_token_account.to_account_info().clone(),

 ctx.accounts.system_program.to_account_info().clone(),

],

 &[&[

 PROGRAM_AUTHORITY_SEED,

 ctx.accounts.index_mint.key().as_ref(),

 &[bump],

]], // Sign with PDA's seeds

19

)?;

If any step fails after this initial transfer, the funds remain in intermediate accounts
with no recovery path.

Mitigation Implement emergency recovery functions that allow administrators to rescue funds
from intermediate states in case of multi-step operation failures. Add timeouts to
operations and automatic cleanup mechanics if certain operations aren't completed
within expected timeframes.

20

Zero Rent-Exempt Lamports for Account Creation

ID SAY-04

Status Fixed

Risk High

Business
Impact

Accounts created without rent-exemption will be deleted after two epochs,
potentially causing transaction failures at unpredictable times and permanently
locking user funds when they attempt operations during account deletion.

Location - lib.rs; create_index(Context<CreateIndex>, String, String,
String, Vec<IndexToken>, Vec<FeeCollector>, Option<u64>,
Option<u64>)

Description The code explicitly sets rent_exempt_lamports to zero when creating program
authority PDAs, ignoring the Solana requirement for rent exemption. This approach
violates Solana's account model where accounts must maintain a minimum balance
to avoid deletion

● lib.rs:175-188
let space = 0; // No extra data, just a pure System Account

let rent_exempt_lamports = 0;

let binding = ctx.accounts.index_mint.key();

let seeds: &[&[u8]] = &[PROGRAM_AUTHORITY_SEED, binding.as_ref()];

let (pda_pubkey, bump) = Pubkey::find_program_address(seeds,

ctx.program_id);

let create_account_ix = create_account(

 &payer.key(),

 &pda_pubkey,

 rent_exempt_lamports,

 space as u64,

 &system_program.key(), // Set owner as System Program

);

Without proper rent exemption, these accounts will be purged by the runtime,
causing critical protocol functions to fail unexpectedly.

21

Mitigation Calculate the proper rent-exempt lamports amount based on the account size and
provide this value when creating accounts. Replace the hardcoded zero with the
calculated value.

22

Infrequent Index Valuation Updates

ID SAY-05

Status Fixed

Risk High

Business
Impact

The index's value becomes increasingly inaccurate as underlying asset prices
change, creating systematic arbitrage opportunities where users can profit by
buying undervalued or selling overvalued index tokens at the expense of other
users.

Location - lib.rs; buy_index(Context<BuyIndex>, u64)

Description The protocol tracks index value in the total_value field, but this value is only
updated during user-initiated transactions and not based on current market prices
of the underlying assets. When market prices change, the stored index value
becomes outdated, creating price discrepancies.

● lib.rs:359-351
// Update state

index_info.total_value += deposited_sol_in_usd;

index_info.total_supply += tokens_to_mint;

Without regular updates based on current asset prices, the index value can
significantly deviate from the true market value of its underlying assets

Mitigation Implement a mechanism to update the index's total value based on current market
prices of underlying assets, either through a dedicated update function that can be
called regularly or by calculating real-time values at the point of user operations
using price oracles.

23

Token standard mismatch in swap operations

ID SAY-06

Status Fixed

Risk High

Business
Impact

The protocol may fail when interacting with tokens that use different standards
(Token2022 vs standard SPL), preventing certain tokens from being included in
indices and potentially causing fund loss during swap operations.

Location - lib.rs
- swap_to_tkn(Context<SwapToTkn>, Vec<u8>)
- swap_to_sol(Context<SwapToSol>, u64, Vec<u8>)

Description The code inconsistently handles different token standards, hardcoding assumptions
about which standard to use for different operations. The index token uses
Token2022 but swap operations use the standard token program, creating potential
incompatibilities.

● lib.rs:1157-1159; struct CreateIndex
pub price_update: Account<'info, PriceUpdateV2>, // Pyth price feed

account

pub token_program: Program<'info, Token2022>, // SPL Token program

pub system_program: Program<'info, System>, // System program

● lib.rs:1311; struct SwapToTkn
pub token_program: Interface<'info, TokenInterface>

This separation assumes external tokens always use the standard token program,
which will fail when interacting with Token2022 tokens, an increasingly common
standard on Solana.

Mitigation Implement a flexible approach that can handle both token standards which
standard a token uses at runtime. Use the TokenInterface approach to accept any
token program that implements the standard interface, and adjust operations based
on the detected token program.

24

Missing Slippage Protection in Jupiter Swaps

ID SAY-07

Status Fixed

Risk High

Business
Impact

Swap transactions are vulnerable to front-running and sandwich attacks, allowing
malicious actors to extract value from users' trades by manipulating market
conditions between transaction submission and execution.

Location - lib.rs;
- swap_on_jupiter<'_>(&[AccountInfo], Program<'info,

Jupiter>, Vec<u8>, &Pubkey)
- rebalance_index(Context<RebalanceIndex>, u64,

Vec<u8>)

Description The protocol integrates with Jupiter for token swaps but implements no slippage
protection or minimum output validation. When calling the Jupiter swap function,
there's no validation of the output amount received against any minimum threshold.

Without slippage protection, users can receive significantly less value than expected
if prices move before their transaction executes, or if their transaction is front-run.
The same issue can be found in rebalance_index(...).

Mitigation Implement minimum output validation after swaps by comparing the expected
output amount to the actual received amount. Either use Jupiter's built-in slippage
protection parameters in the swap instruction data or add a post-swap verification.

25

Excessive Staleness Window

ID SAY-08

Status Fixed

Risk Medium

Business
Impact

The 10-minute staleness window for price feeds enables potential oracle
manipulation attacks during significant market movements, allowing attackers to
execute trades with outdated prices at the expense of the protocol.

Location - lib.rs; get_token_price(&Account<PriceUpdateV2>, &str)

Description get_token_price(...) accepts price feed data up to 10 minutes old (600,000
milliseconds), which is substantially longer than standard practice in DeFi protocols.

● lib.rs:73
let price = price_update.get_price_no_older_than(&Clock::get()?, 600000,

&feed_id_bytes)?;

This extended window increases vulnerability to price manipulation, especially in
volatile markets. Even a moderate 5% price movement within this window could
create significant arbitrage opportunities for attackers who can time their
transactions accordingly.

Mitigation ● Reduce the maximum staleness period to 1-2 minutes (60,000-120,000
milliseconds) to ensure prices more accurately reflect current market
conditions.

● Add additional checks for extreme price movements, especially for highly
volatile assets.

26

No Admin Rotation

ID SAY-09

Status Fixed

Risk Medium

Business
Impact

If the admin key is compromised, the entire protocol is permanently compromised
with no recovery path, creating a single point of failure for the system's security and
governance.

Location - Structural

Description The protocol lacks the ability to change the admin address once it is set during
initialization. The hardcoded admin key combined with its storage in state lead to an
overly rigid structure, which prevents protocol governance evolution, as ownership
cannot be transferred to multisig or DAO structures as the protocol matures.

● lib.rs:106-117
const ADMIN: Pubkey =

pubkey!("2LYa8F6T2iPd4uaxM7hu3ctKXXtHnBPgP5YzCETrFgiT");

const TOKEN_2022_PROGRAM_ID: Pubkey =

pubkey!("TokenzQdBNbLqP5VEhdkAS6EPFLC1PHnBqCXEpPxuEb");

pub fn initialize(ctx: Context<Initialize>, admin: Pubkey) -> Result<()>

{

 require!(ADMIN == *ctx.accounts.admin.key, ErrorCode::Unauthorized);

 let program_state = &mut ctx.accounts.program_state;

 program_state.admin = admin;

 program_state.bump = ctx.bumps.program_state;

 Ok(())

}

Mitigation Implement an admin rotation functionality that allows the current admin to transfer
their privileges to a new address.

27

No Emergency Pause

ID SAY-10

Status Fixed

Risk Medium

Business
Impact

During critical security incidents or market emergencies, protocol operators cannot
temporarily suspend operations, leaving users exposed to potential loss of funds.

Location - Structural

Description While the protocol includes an index status field that is checked in multiple
operations, it is impossible to change the default active state (0). This creates a
structural weakness in the protocol's emergency response capabilities.

Mitigation ● Implement a pause/unpause function accessible only to the admin or
another governance mechanism that can change the index status value.

● Add an appropriate status enum with clear states (Active, Paused) rather
than using numeric values.

28

Missing Index Token Verification

ID SAY-11

Status Fixed

Risk Medium

Business
Impact

Without proper verification between burned tokens and the index account, an
attacker might be able to burn tokens from one index to receive assets from
another index under specific conditions.

Location - lib.rs; sell_index(Context<SellIndex>, u64)

Description sell_index(...) does not verify that the index tokens being burned correspond
to the provided index_info account. The function readily accepts the token burn
and calculates redemption values without confirming this critical relationship.

Mitigation ● Add explicit verification that the burn matches the expected burn for the
provided index_info account.

● Create a direct connection between these accounts through appropriate
seed derivation and validation.

29

No Weight Validation during Rebalancing

ID SAY-12

Status Fixed

Risk Medium

Business
Impact

If rebalancing weights don't sum to 100%, the index composition would be
permanently imbalanced, creating accounting errors and incorrect valuations that
affect all users.

Location - lib.rs; rebalance_index_start(Context<RebalanceIndexStart>,
Vec<u64>)

Description rebalance_index_start(...) doesn't verify that the new weights sum to 100%,
unlike the initial validation performed during index creation. Without this, an admin
could set weights that don't properly sum to 100%, permanently damaging the
index's accounting.

Mitigation Add the weight validation logic from create_index(...) to
rebalance_index_start(...).

● lib.rs:144-148
let total_weight: u64 = index_tokens

 .iter()

 .map(|index_token| index_token.weight)

 .sum();

require!(total_weight == 100_00, ErrorCode::InvalidTokenWeight);

30

Unbounded Fee

ID SAY-13

Status Fixed

Risk Medium

Business
Impact

A malicious or compromised admin could set fees to extreme levels (up to 100% or
higher), effectively stealing all user deposits.

Location - lib.rs; create_index(Context<CreateIndex>, String, String,
String, Vec<IndexToken>, Vec<FeeCollector>, Option<u64>,
Option<u64>)

Description The platform fee parameter has no upper bound, allowing it to be set to arbitrary
values. While the default is a reasonable 100 basis points (1%), an admin could set
this to 10000 (100%) or even higher.

● lib.rs:230-232
index_info.platform_fee_bps = platform_fee_bps.unwrap_or(100);

ctx.accounts.initialize_token_metadata(name, symbol, uri)?;

Mitigation Decide a maximum cap on platform fees (e.g., 500 basis points or 5%) and add logic
to enforce this maximum.

31

Incorrect Token-2022 Implementation

ID SAY-14

Status Fixed

Risk Low

Business
Impact

Improper implementation of the Token-2022 metadata extension could cause
integration issues with wallets, explorers, and other ecosystem tools, potentially
affecting user experience and token functionality.

Location - lib.rs:1147

Description The code incorrectly configures the metadata_pointer extension by setting the
metadata address to the mint itself, which violates the Token-2022 standard that
requires metadata to be stored in a separate account.

● lib.rs:1147
extensions::metadata_pointer::metadata_address = index_mint,

Mitigation ● Create a separate account for token metadata and configure the
metadata_pointer extension to point to this separate account, following the
Token-2022 standard guidelines.

● Alternatively, consider using the built-in metadata capability of Token-2022
without the pointer extension.

32

Fixed Fee Can Underflow

ID SAY-15

Status Fixed

Risk Low

Business
Impact

Transactions could unexpectedly fail or attackers could exploit edge cases where the
amount after fees becomes negative, leading to underflow and potential loss of
funds.

Location - lib.rs; buy_index(Context<BuyIndex>, u64)

Description The new reversion introduces a fixed swap fee but doesn't properly validate that the
input amount is sufficient to cover both the fixed and percentage-based fees before
calculation.

While the code checks that amount_after_fee != 0, it doesn't verify that
amount_in_lamports > fee_in_lamports + FIXED_SWAP_FEE before
performing the subtraction, which could lead to arithmetic underflow in the
calculation if the sum of fees exceeds the deposit amount, reverting the transaction
at the end.

Mitigation We recommend adding an explicit check to ensure the input amount is greater than
the combined fees before calculation.

33

Duplicate Event Emission

ID SAY-16

Status Fixed

Risk Low

Business
Impact

Duplicate events could confuse off-chain indexers and monitoring systems, causing
transaction history inconsistencies and potentially incorrect analytics reporting.

Location - lib.rs; buy_index(Context<BuyIndex>, u64)

Description buy_index(...) emits DmacSwapToTokenStartEvent twice with identical
parameters.

● lib.rs:371-375, 384-388
emit!(DmacSwapToTokenStartEvent {

 index_mint: ctx.accounts.index_mint.key(),

 sol_to_swap: swap_to_tkn_info.sol_to_swap,

 tokens: swap_to_tkn_info.swapped_tokens.len() as u64,

});

...

emit!(DmacSwapToTokenStartEvent {

 index_mint: ctx.accounts.index_mint.key(),

 sol_to_swap: swap_to_tkn_info.sol_to_swap,

 tokens: swap_to_tkn_info.swapped_tokens.len() as u64,

});

Mitigation Remove one of the duplicate event emissions to ensure each event is emitted
exactly once per operation.

34

Leftover Function

ID SAY-17

Status Fixed

Risk Informational

Business
Impact

This finding is purely informational.

Location - lib.rs; check_is_transferring(&Context<TransferHook>)

Description While the Token-2022 transfer hook extensions have been removed, the supporting
check_is_transferring(...) still remains in the code.

Mitigation ● Remove check_is_transferring(...) and any related code that
supported the transfer hook implementation.

● Remove the TransferHook account structure.

35

Misleading Comment

ID SAY-18

Status Fixed

Risk Informational

Business
Impact

This finding is purely informational.

Location - lib.rs:1219

Description The codebase contains comments regarding token program types, referring to
Token2022 program declarations as "SPL Token program".

● lib.rs:1219
pub token_program: Program<'info, Token2022>, // SPL Token program

Mitigation Correct the comment.

36

Unexplained ‘Magic’ Number

ID SAY-19

Status Fixed

Risk Informational

Business
Impact

This finding is purely informational.

Location - lib.rs; get_rebalance_info(&Vec<u64>, &Vec<IndexToken>)

Description get_rebalance_info(...) uses the number 10001 as a default return value
without any explanation of its significance or meaning.

● lib.rs:1982-1983
// If neither negative nor positive diffs exist, return (usize::MAX,

10001)

(usize::MAX, 10001)

Mitigation ● Replace magic numbers with named constants that clearly express their
meaning and purpose.

● Alternatively, clearly explain the significance of the number in a comment.

37

Unused Program State

ID SAY-20

Status Fixed

Risk Informational

Business
Impact

This finding is purely informational.

Location - lib.rs
- buy_index(Context<BuyIndex>, u64)
- sell_index(Context<SellIndex>, u64)

Description buy_index(...) and sell_index(...) load the program_state account but
don't use it for any logical operations.

Mitigation ● Remove program_state from the Context structure if not necessary for the
function’s logic

● Alternatively, implement consistent validation against program_state values
if the intent is to perform administrative checks.

38

Unused Parameter in swap_on_jupiter<'_>(...)

ID SAY-21

Status Fixed

Risk Informational

Business
Impact

This finding is purely informational.

Location - lib.rs; swap_on_jupiter<'_>(&[AccountInfo], Program<'info,
Jupiter>, Vec<u8>, &Pubkey)

Description swap_on_jupiter<'_>(...) accepts a program_id parameter but never uses it
for validation or any other purpose.

Mitigation Either remove the unused parameter or properly validate that the program ID
matches the expected Jupiter program ID before proceeding with the swap.

39

Deprecated Findings
The following findings do not appear to be relevant to the most recent reversion of the code sent to
us, either because they were fixed, or the code had significantly changed, but were included in the
report for completeness. These findings were not included in the vulnerability breakdown or cout
given above.

Premature Token Minting

ID SAY-22

Status Fixed

Risk Critical

Business
Impact

Users can receive index tokens before the underlying assets are actually acquired,
potentially creating unbacked tokens if subsequent swap operations fail, leading to
inflation that devalues all existing index tokens.

Location - lib.rs; buy_index(Context<BuyIndex>, u64)

Description The protocol mints index tokens to users immediately during the buy_index(...),
before the corresponding assets are purchased through swap operations. If the
swap operations fail after minting, users would hold tokens not backed by assets.

● lib.rs:334-358
// Mint tokens to the user

let tokens_to_mint: f64 = if index_info.total_value == 0.0 {

 deposited_sol_in_usd

} else {

 (deposited_sol_in_usd * index_info.total_supply) /

index_info.total_value

};

if tokens_to_mint > 0.0 {

 token_2022::mint_to(

 CpiContext::new(

 ctx.accounts.token_program.to_account_info(),

 token_2022::MintTo {

 mint: ctx.accounts.index_mint.to_account_info().clone(),

 to: ctx.accounts.user_token_account.to_account_info(),

 authority:

ctx.accounts.authority.to_account_info().clone(),

 },

40

),

 (tokens_to_mint * LAMPORTS_PER_SOL as f64) as u64,

)?;

 msg!(

 "Minted {} tokens to user: {}",

 tokens_to_mint,

 ctx.accounts.user.key()

);

}

Mitigation Delay token minting until after successful asset acquisition. Implement a two-phase
process where user deposits are first used to acquire underlying assets, and only
after successful acquisition, mint the corresponding index tokens to the user.

41

Risk of Race Conditions in Swap Operations

ID SAY-23

Status Fixed

Risk Critical

Business
Impact

Multiple users' swap operations could interfere with each other due to shared
account state, potentially allowing one user to complete another user's operation
and steal their tokens in a race condition scenario.

Location - lib.rs; struct SwapToTknStart

Description The code uses shared PDAs without user-specific context for tracking swap progress,
creating potential race conditions in concurrent operations. The swap tracking PDA
is created with seeds that don't include the user's pubkey, making it shared across
all users.

● lib.rs:1219-1228
#[account(

 init,

 payer = admin,

 space = 8 + size_of::<SwapToTokenInfo>() + size_of::<bool>() +

index_info.index_tokens.len(),

 seeds = [

 b"swap_to_tkn",

 index_mint.key().as_ref()

],

 bump,

)]

Mitigation Include the user's pubkey in the seed for swap-related PDAs to isolate operations
between users.

42

Improper Error Handling in transfer hook

ID SAY-24

Status Fixed

Risk Low

Business
Impact

The use of panic-based error handling in the transfer hook could create
unpredictable transaction execution effects, potentially exploitable in complex
transaction batches where partial execution might occur.

Location - lib.rs; execute(Context<TransferHook>, u64)

Description The transfer hook implementation uses a panic to prevent unauthorized transfers
instead of returning a proper error. This approach is problematic as it leaves
transactions in an indeterminate state and doesn't provide meaningful debugging
information.

● lib.rs:988-994
#[interface(spl_transfer_hook_interface::execute)]

pub fn execute(ctx: Context<TransferHook>, _amount: u64) -> Result<()> {

 // Fail this instruction if it is not called from within a transfer

hook

 check_is_transferring(&ctx)?;

 panic!("Transfer not allowed");

}

Mitigation Replace the panic with a proper error return to provide clear feedback and ensure
consistent transaction handling.

43

We are available at security@sayfer.io

If you want to encrypt your message please use our public PGP key:

https://sayfer.io/pgp.asc

Key ID: 9DC858229FC7DD38854AE2D88D81803C0EBFCD88

Website: https://sayfer.io

Public email: info@sayfer.io

Phone: +972-559139416

44

mailto:security@sayfer.io
https://sayfer.io/pgp.asc
https://sayfer.io
mailto:info@sayfer.io

	
	
	
	
	Smart Contract Audit Report for Medley Finance
	Table of Contents
	Management Summary
	Risk Methodology
	Vulnerabilities by Risk
	Approach
	Introduction
	Scope Overview
	Scope Validation
	Threat Model

	Protocol Overview
	Protocol Introduction

	Security Evaluation
	
	Security Assessment Findings
	Inverted Token Validation
	Decimal Precision Risk in Swaps
	No Recovery Path for Failed Multi-Step Operations
	Zero Rent-Exempt Lamports for Account Creation
	Infrequent Index Valuation Updates
	Token standard mismatch in swap operations
	Missing Slippage Protection in Jupiter Swaps
	Excessive Staleness Window
	No Admin Rotation
	No Emergency Pause
	Missing Index Token Verification
	No Weight Validation during Rebalancing
	Unbounded Fee
	Incorrect Token-2022 Implementation
	Fixed Fee Can Underflow
	Duplicate Event Emission
	Leftover Function
	Misleading Comment
	Unexplained ‘Magic’ Number
	Unused Program State
	Unused Parameter in swap_on_jupiter<'_>(...)
	Deprecated Findings
	Premature Token Minting
	Risk of Race Conditions in Swap Operations
	Improper Error Handling in transfer hook

	

