
Smart Contract Audit
Report for Dimo

Testers
1. Or Duan
2. Avigdor Sason Cohen

1

Table of Contents
Table of Contents 2
Management Summary 3
Risk Methodology 4
Vulnerabilities by Risk 5
Approach 6

Introduction 6
Scope Overview 6
Scope Validation 6
Threat Model 6

Protocol Overview 7
Protocol Introduction 7

Security Evaluation 8
Audit Findings 15

Centralization Risk 15
[H] Changing Genesis Time Can Potentially Disrupt Reward Distribution 15
[H] Unchecked Admin Withdrawal 17
[H] Admins Can Reset the Registry at Will 18
[I] Deployer has Both Admin and Oracle Roles 19

[M] Use AccessControlDefaultAdminRulesUpgradeable 20
[L] Insufficient Input Validation in manuallySetRewardsGenesisTime(uint256) 21
[L] Insufficient Input Validation in setMinimumTimeForRewards(uint256) 22
[L] Unused Error 23
[L] Unchecked Return Value 24
[L] Deprecated API Call 25
[I] Insufficient Event Emission 26
[I] Solidity Versioning 27
[I] Index the week Parameter in TokensTransferredForConnectionStreak() 28
[I] Adherence to the Solidity Style Guide 29

2

Management Summary

Dimo contacted Sayfer to perform a security audit on their smart contract.

This report documents the research carried out by Sayfer targeting the selected resources
defined under the research scope. Particularly, this report displays the security posture
review for Dimo’s smart contract.

Over the research period of 40 research hours, we discovered 14 vulnerabilities in the
contract. None of them are critical.

In conclusion, several fixes should be implemented following the report, but the system's
security posture is competent.

After a review by the Sayfer team, we certify that all the security issues mentioned in this
report have been addressed by the Dimo team.

3

Risk Methodology

At Sayfer, we are committed to delivering the highest quality smart contract audits to our
clients. That's why we have implemented a comprehensive risk assessment model to
evaluate the severity of our findings and provide our clients with the best possible
recommendations for mitigation.

Our risk assessment model is based on two key factors: IMPACT and LIKELIHOOD. Impact
refers to the potential harm that could result from an issue, such as financial loss,
reputational damage, or a non-operational system. Likelihood refers to the probability that
an issue will occur, taking into account factors such as the complexity of the contract and
the number of potential attackers.

By combining these two factors, we can create a comprehensive understanding of the risk
posed by a particular issue and provide our clients with a clear and actionable assessment
of the severity of the issue. This approach allows us to prioritize our recommendations and
ensure that our clients receive the best possible advice on how to protect their smart
contracts.

Risk is defined as follows:

Overall Risk Security

HIGH Medium High Critical

MEDIUM Low Medium High

LOW Informational Low Medium

LOW MEDIUM HIGH

LIKELIHOOD

4

Vulnerabilities by Risk

Risk Low Medium High Critical Informational

of issues 5 1 3 0 5

5

Approach

Introduction
Dimo contacted Sayfer to perform a security audit on their smart contract.

This report documents the research carried out by Sayfer targeting the selected resources
defined under the research scope. Particularly, this report displays the security posture
review for the aforementioned contracts.

Scope Overview
Together with the client team we defined the following contract as the scope of the project.
Commit hash: 14ce58aa499e3672fb0b61da13948a6ea51fb879

Contract Sha-256

Reward.sol 86cffc0108ebe977ac55650da60cccc5f790013332186a2cb4dab47d7d38ac87

Our tests were performed in January 2024.

Scope Validation
We began by ensuring that the scope defined to us by the client was technically logical.
Deciding what scope is right for a given system is part of the initial discussion.

Threat Model
We defined that the largest current threat to the system is the ability of malicious users to
steal funds from the contract.

6

Protocol Overview

Protocol Introduction
DIMO is a web3 IoT company that allows users and developers to tap into the rich stream
of data generated by modern vehicles. Its solution is a user-owned ecosystem that allows
drivers to reap economic benefits from their data and make possible applications like
parametric insurance, peer-to-peer car sharing, and vehicle marketplaces. The
decentralized platform also gives developers peace of mind, knowing their access to the
data is not subject to the whims of a centralized gatekeeper. This solution is built on
Polygon.

7

Security Evaluation
The following test cases were the guideline while auditing the system. This checklist is a
modified version of the SCSVS v1.2, with improved grammar, clarity, conciseness, and
additional criteria. Where there is a gap in the numbering, an original criterion was
removed. Criteria that are marked with an asterisk were added by us.

Architecture,
Design and
Threat

Modeling

Test Name

G1.2 Every introduced design change is preceded by threat modeling.

G1.3
The documentation clearly and precisely defines all trust boundaries in the contract
(trusted relations with other contracts and significant data flows).

G1.4
The SCSVS, security requirements or policy is available to all developers and
testers.

G1.5 The events for the (state changing/crucial for business) operations are defined.

G1.6
The project includes a mechanism that can temporarily stop sensitive
functionalities in case of an attack. This mechanism should not block users’ access
to their assets (e.g. tokens).

G1.7
The amount of unused cryptocurrencies kept on the contract is controlled and at
the minimum acceptable level so as not to become a potential target of an attack.

G1.8 If the fallback function can be called by anyone, it is included in the threat model.

G1.9
Business logic is consistent. Important changes in the logic should be applied in all
contracts.

G1.10 Automatic code analysis tools are employed to detect vulnerabilities.
G1.11 The latest major release of Solidity is used.

G1.12
When using an external implementation of a contract, the most recent version is
used.

G1.13
When functions are overridden to extend functionality, the super keyword is used
to maintain previous functionality.

G1.14 The order of inheritance is carefully specified.
G1.15 There is a component that monitors contract activity using events.
G1.16 The threat model includes whale transactions.

G1.17
The leakage of one private key does not compromise the security of the entire
project.

Policies and
Procedures

Test Name

8

https://github.com/securing/SCSVS/tree/master/1.2

G2.2
The system's security is under constant monitoring (e.g. the expected level of
funds).

G2.3
There is a policy to track new security vulnerabilities and to update libraries to the
latest secure version.

G2.4
The security department can be publicly contacted and that the procedure for
handling reported bugs (e.g., thorough bug bounty) is well-defined.

G2.5 The process of adding new components to the system is well defined.

G2.6
The process of major system changes involves threat modeling by an external
company.

G2.7
The process of adding and updating components to the system includes a security
audit by an external company.

G2.8 In the event of a hack, there’s a clear and well known mitigation procedure in place.

G2.9
The procedure in the event of a hack clearly defines which persons are to execute
the required actions.

G2.10
The procedure includes alarming other projects about the hack through trusted
channels.

G2.11 A private key leak mitigation procedure is defined.

Upgradability Test Name

G2.2
Before upgrading, an emulation is made in a fork of the main network and
everything works as expected on the local copy.

G2.3
The upgrade process is executed by a multisig contract where more than one
person must approve the operation.

G2.4
Timelocks are used for important operations so that the users have time to
observe upcoming changes (please note that removing potential vulnerabilities in
this case may be more difficult).

G2.5 initialize() can only be called once.

G2.6
initialize() can only be called by an authorized role through appropriate modifiers
(e.g. initializer, onlyOwner).

G2.7 The update process is done in a single transaction so that no one can front-run it.
G2.8 Upgradeable contracts have reserved gap on slots to prevent overwriting.

G2.9
The number of reserved (as a gap) slots has been reduced appropriately if new
variables have been added.

G2.10
There are no changes in the order in which the contract state variables are
declared, nor their types.

G2.11
New values returned by the functions are the same as in previous versions of the
contract (e.g. owner(), balanceOf(address)).

G2.12 The implementation is initialized.
G2.13 The implementation can't be destroyed.

9

Business Logic Test Name

G4.2
The contract logic and protocol parameters implementation corresponds to the
documentation.

G4.3
The business logic proceeds in a sequential step order and it is not possible to skip
steps or to do it in a different order than designed.

G4.4 The contract has correctly enforced business limits.

G4.5
The business logic does not rely on the values retrieved from untrusted contracts
(especially when there are multiple calls to the same contract in a single flow).

G4.6 The business logic does not rely on the contract’s balance (e.g., balance == 0).
G4.7 Sensitive operations do not depend on block data (e.g., block hash, timestamp).

G4.8
The contract uses mechanisms that mitigate transaction-ordering (front-running)
attacks (e.g. pre-commit schemes).

G4.9
The contract does not send funds automatically, but lets users withdraw funds in
separate transactions instead.

Access Control Test Name

G5.2
The principle of the least privilege is upheld. Other contracts should only be able to
access functions and data for which they possess specific authorization.

G5.3
New contracts with access to the audited contract adhere to the principle of
minimum rights by default. Contracts should have a minimal or no permissions
until access to the new features is explicitly granted.

G5.4
The creator of the contract complies with the principle of the least privilege and
their rights strictly follow those outlined in the documentation.

G5.5
The contract enforces the access control rules specified in a trusted contract,
especially if the dApp client-side access control is present and could be bypassed.

G5.6 Calls to external contracts are only allowed if necessary.

G5.7
Modifier code is clear and simple. The logic should not contain external calls to
untrusted contracts.

G5.8
All user and data attributes used by access controls are kept in trusted contracts
and cannot be manipulated by other contracts unless specifically authorized.

G5.9 the access controls fail securely, including when a revert occurs.

G5.10
If the input (function parameters) is validated, the positive validation approach
(whitelisting) is used where possible.

Communication Test Name

G6.2
Libraries that are not part of the application (but the smart contract relies on to
operate) are identified.

10

G6.3 Delegate call is not used with untrusted contracts.

G6.4 Third party contracts do not shadow special functions (e.g. revert).

G6.5
The contract does not check whether the address is a contract using extcodesize
opcode.

G6.6
Re-entrancy attacks are mitigated by blocking recursive calls from other contracts
and following the Check-Effects-Interactions pattern. Do not use the send function
unless it is a must.

G6.7
The result of low-level function calls (e.g. send, delegatecall, call) from other
contracts is checked.

G6.8
Contract relies on the data provided by the right sender and does not rely on
tx.origin value.

Arithmetic Test Name

G7.2
The values and math operations are resistant to integer overflows. Use SafeMath
library for arithmetic operations before solidity 0.8.*.

G7.3
the unchecked code snippets from Solidity ≥ 0.8.* do not introduce integer
under/overflows.

G7.4
Extreme values (e.g. maximum and minimum values of the variable type) are
considered and do not change the logic flow of the contract.

G7.5 Non-strict inequality is used for balance equality.
G7.6 Correct orders of magnitude are used in the calculations.
G7.7 In calculations, multiplication is performed before division for accuracy.

G7.8
The contract does not assume fixed-point precision and uses a multiplier or store
both the numerator and denominator.

Denial of
Service

Test Name

G8.2 The contract does not iterate over unbound loops.

G8.3
Self-destruct functionality is used only if necessary. If it is included in the contract, it
should be clearly described in the documentation.

G8.4 The business logic isn't blocked if an actor (e.g. contract, account, oracle) is absent.

G8.5
The business logic does not disincentivize users to use contracts (e.g. the cost of
transaction is higher than the profit).

G8.6 Expressions of functions assert or require have a passing variant.

G8.7
If the fallback function is not callable by anyone, it is not blocking contract
functionalities.

G8.8 There are no costly operations in a loop.
G8.9 There are no calls to untrusted contracts in a loop.
G8.10 If there is a possibility of suspending the operation of the contract, it is also

11

possible to resume it.

G8.11
If whitelists and blacklists are used, they do not interfere with normal operation of
the system.

G8.12 There is no DoS caused by overflows and underflows.

Blockchain Data Test Name

G9.2
Any saved data in contracts is not considered secure or private (even private
variables).

G9.3
No confidential data is stored in the blockchain (passwords, personal data, token
etc.).

G9.4
Contracts do not use string literals as keys for mappings. Global constants are used
instead to prevent Homoglyph attack.

G9.5
Contract does not trivially generate pseudorandom numbers based on the
information from blockchain (e.g. seeding with the block number).

Gas Usage and
Limitations

Test Name

G10.2
Gas usage is anticipated, defined and has clear limitations that cannot be
exceeded. Both code structure and malicious input should not cause gas
exhaustion.

G10.3
Function execution and functionality does not depend on hard-coded gas fees (they
are bound to vary).

Clarity and
Readability

Test Name

G11.2 The logic is clear and modularized in multiple simple contracts and functions.

G11.3
Each contract has a short 1-2 sentence comment that explains its purpose and
functionality.

G11.4
Off-the-shelf implementations are used, this is made clear in comment. If these
implementations have been modified, the modifications are noted throughout the
contract.

G11.5
The inheritance order is taken into account in contracts that use multiple
inheritance and shadow functions.

G11.6
Where possible, contracts use existing tested code (e.g. token contracts or
mechanisms like ownable) instead of implementing their own.

G11.7 Consistent naming patterns are followed throughout the project.
G11.8 Variables have distinctive names.
G11.9 All storage variables are initialized.
G11.10 Functions with specified return type return a value of that type.

12

G11.11 All functions and variables are used.
G11.12 require is used instead of revert in if statements.

G11.13
The assert function is used to test for internal errors and the require function is
used to ensure a valid condition in input from users and external contracts.

G11.14 Assembly code is only used if necessary.

Test Coverage Test Name

G12.2 Abuse narratives detailed in the threat model are covered by unit tests.

G12.3
Sensitive functions in verified contracts are covered with tests in the development
phase.

G12.4
Implementation of verified contracts has been checked for security vulnerabilities
using both static and dynamic analysis.

G12.5 Contract specification has been formally verified.

G12.6
The specification and results of the formal verification is included in the
documentation.

Decentralized
Finance

Test Name

G14.1
The lender's contract does not assume its balance (used to confirm loan
repayment) to be changed only with its own functions.

G14.2

Functions that change lenders’ balance and/or lend cryptocurrency are
non-re-entrant if the smart contract allows borrowing the main platform's
cryptocurrency (e.g. Ethereum). It blocks the attacks that update the borrower's
balance during the flash loan execution.

G14.3
Flash loan functions can only call predefined functions on the receiving contract. If
it is possible, define a trusted subset of contracts to be called. Usually, the sending
(borrowing) contract is the one to be called back.

G14.4

If it includes potentially dangerous operations (e.g. sending back more ETH/tokens
than borrowed), the receiver's function that handles borrowed ETH or tokens can
be called only by the pool and within a process initiated by the receiving contract’s
owner or another trusted source (e.g. multisig).

G14.5

Calculations of liquidity pool share are performed with the highest possible
precision (e.g. if the contribution is calculated for ETH it should be done with 18
digit precision - for Wei, not Ether). The dividend must be multiplied by the 10 to
the power of the number of decimal digits (e.g. dividend * 10^18 / divisor).

G14.6
Rewards cannot be calculated and distributed within the same function call that
deposits tokens (it should also be defined as non-re-entrant). This protects from
momentary fluctuations in shares.

G14.7 Governance contracts are protected from flash loan attacks. One possible

13

mitigation technique is to require the process of depositing governance tokens and
proposing a change to be executed in different transactions included in different
blocks.

G14.8
When using on-chain oracles, contracts are able to pause operations based on the
oracles’ result (in case of a compromised oracle).

G14.9

External contracts (even trusted ones) that are allowed to change the attributes of
a project contract (e.g. token price) have the following limitations implemented:
thresholds for the change (e.g. no more/less than 5%) and a limit of updates (e.g.
one update per day).

G14.10
Contract attributes that can be updated by the external contracts (even trusted
ones) are monitored (e.g. using events) and an incident response procedure is
implemented (e.g. during an ongoing attack).

G14.11
Complex math operations that consist of both multiplication and division
operations first perform multiplications and then division.

G14.12
When calculating exchange prices (e.g. ETH to token or vice versa), the numerator
and denominator are multiplied by the reserves (see the getInputPrice function in
the UniswapExchange contract).

14

Audit Findings

Centralization Risk
During our research, we noticed that many aspects of the contracts are highly centralized.
Oracles and admins can perform dramatic actions that could possibly break the contract.
The following findings demonstrate specific cases. The mitigation section in each finding
concerns only that particular case. However, we recommend employing a more general
strategy.

One such mitigation strategy would be to rethink the overall architecture of the project
such that no one account can make platform-changing decisions. A less drastic mitigation
method would be to establish multisig accounts for these roles.

[H] Changing Genesis Time Can Potentially Disrupt Reward Distribution

ID SAY-01

Status Fixed

Risk High

Business
Impact

rewardsGenesisTime is a critical variable that tracks the time when the
rewards were started and thus governs reward distribution.

The rate of rewards continues to decrease over time slowly reducing to 85%
of the previous cycle at some point in future. Therefore, resetting genesis
time after beginning reward distribution may disrupt the whole scheme.

Location - Reward.sol; resetRewardsGenesisTime()
- Reward.sol; manuallySetRewardsGenesisTime(uint256)

Description Changing rewardsGenesisTime later in the cycle later will impact the crucial
currentWeek and weekLimit variables and could potentially mess up the
whole reward distribution scheme and its projected schedule.

Mitigation One possible mitigation is to revise these functions such that resetting
genesis time is only possible before reward distribution has started:

15

function resetRewardsGenesisTime() external onlyRole(ADMIN_ROLE) {

require(dimoTotalSentOutByContract��0,"Reward Distribution

already started");

rewardsGenesisTime = block.timestamp;

}

If resetting or changing the variable after the fact is necessary, perhaps it can
be handled in a controlled and predictable manner on-chain, rather than
allowing admins arbitrary control.

16

[H] Unchecked Admin Withdrawal

ID SAY-02

Status Fixed

Risk High

Business
Impact

While admin accounts by definition are given a measure of trust, if they are
compromised, they can be used to drain the contract of its funds using this
function.

Location - Reward.sol; adminWithdraw(address, uint256)

Description The function adminWithdraw(address, uint256) allows admins to send
contract funds to users without limitation. According to the documentation,
this is used if users send DIMO to the contract without staking. However, we
believe this function may be liable to abuse, as explained in the business
impact section.

Mitigation One conceivable way of increasing security is to submit a request on behalf
of a user, perhaps using an account with the oracle role. An admin then has
to approve the transaction. This at least requires two accounts to approve
such transactions, providing another layer of security.

17

[H] Admins Can Reset the Registry at Will

ID SAY-03

Status Acknowledged

Risk High

Business
Impact

Registry is where the user data is stored and validations are performed. If
the registry is reset, existing users will stop receiving rewards unless the data
is migrated to the new registry.

Location - Reward.sol; setRegistryContractAddress(address)

Description setRegistryContractAddress(address) allows admins to reset the registry
address at will.

Mitigation One solution is to make sure that this function reverts unless the registry is
not set in the first place.
function setRegistryContractAddress(

address registryContractAddress

) external onlyRole(ADMIN_ROLE) {

require(

registryContractAddress != address(0),

"registryContractAddress is an invalid zero address"

);

require(address(registry)��address(0)),"already set, cannot

be set again")

registry = IRegistry(registryContractAddress);

}

Another solution is to set up a data migration procedure. If such a procedure
is already in place, then this finding can be safely ignored.

18

[I] Deployer has Both Admin and Oracle Roles

ID SAY-04

Status Acknowledged

Risk Informational

Business
Impact

We decided to rate this finding as informational because it is mainly a
corollary to the main centralization concerns detailed above. With the
current way the system is built, it is necessary for someone to assign and
manage the Oracle and Admin roles. However, it is not necessary for that
account to hold these roles itself.

Location - Reward.sol:108-111; initialize(address, address, address)

Description During initialization, the deployer receives both admin, default admin and
oracle roles:
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);

_setupRole(ORACLE_ROLE, msg.sender);

_setupRole(ADMIN_ROLE, msg.sender);

Mitigation Consider only giving the default admin role, inherited from OA’s
AccessControlUpgradeable, to the deployer, allowing it to manage roles for
other users.

19

[M] Use AccessControlDefaultAdminRulesUpgradeable

ID SAY-05

Status Acknowledged

Risk Medium

Business
Impact

Given the inherent centralization of the contract and the importance of
admin roles (and therefore their management), we decided to rate this
finding as medium risk.

Location -

Description Reward.sol currently uses AccessControlUpgradable to grant and manage
access to critical functions. In OZ’s access control scheme, the account
possessing DEFAULT_ADMIN_ROLE is capable of granting and withdrawing all
other roles. In the current state of the contract it is given to the deployer
upon initialization.

AccessControlDefaultAdminRulesUpgradeable extends
AccessControlUpgradable with two crucial security features:

● Only one account can hold DEFAULT_ADMIN_ROLE.
● DEFAULT_ADMIN_ROLE can only be transferred using a two-step

process. A configurable delay between the two steps,
changeDefaultAdminDelay, is enforced.

Mitigation Switch from AccessControlUpgradable to
AccessControlDefaultAdminRulesUpgradeable.

20

[L] Insufficient Input Validation in
manuallySetRewardsGenesisTime(uint256)

ID SAY-06

Status Fixed

Risk Low

Business
Impact

We rate this issue as low, since a mistaken value could be rectified by the
admin just as easily as it was given.

Location - Reward.sol; manuallySetRewardsGenesisTime(uint256)

Description Beside posing a centralization risk, as detailed above,
manuallySetRewardsGenesisTime(uint256) also fails to validate the
timestamp given by the admin. It would happily accept a future time, leading
to _getNumberOfWeeksSinceGenesis() to revert:
function _getNumberOfWeeksSinceGenesis()

private

view

returns (uint256 unixTimeDiff)

{

unixTimeDiff = (block.timestamp - rewardsGenesisTime) / 7 days;

}

Mitigation Make sure that the input is equal or smaller than the current timestamp.

21

[L] Insufficient Input Validation in
setMinimumTimeForRewards(uint256)

ID SAY-07

Status Fixed

Risk Low

Business
Impact

Just like the above finding, we decided to rate this finding as low risk because
it can easily be rectified by calling the function again.

Location - Reward.sol; setMinimumTimeForRewards(uint256)

Description This finding is very similar in substance to the one directly above it. Too high
of a value will render users unable to claim their rewards. This, in tandem
with the fact that rewards are diminished on a weekly basis by
_limitForWeek(uint256), will neuter the advantage conferred by early
adoption.

Mitigation Define an acceptable range of values for minimumTimeForRewards and
enforce it through the function. Because of the direct influence this value
has on the platform’s entire reward structure, managing it carefully is
paramount.

22

[L] Unused Error

ID SAY-08

Status Fixed

Risk Low

Business
Impact

We decided to rate this issue as low rather than informational, this
seemingly accidental omission does have some impact on the contract’s
logic.

Location - Reward.sol:12

Description The error InvalidArrayLegnth() is declared on line 12, but never used.

Mitigation We hypothesize that this error was supposed to be thrown in
batchTransfer(TransferInfo[]) if the supplied array does not have eight
members:
if(transferInfos.length �� 8) revert InvalidArrayLength();

23

[L] Unchecked Return Value

ID SAY-09

Status Fixed

Risk Low

Business
Impact

The transfer function of ERC20 tokens returns the success or failure of the
transfer as a boolean. It is considered good practice to check this value and
only proceed if it succeeds. However, because the documentation implies
that batchTransfer(TransferInfo[]) is only used to transfer Dimo tokens,
we rate this finding as low.

Location - Reward.sol:232; batchTransfer(TransferInfo[])

Description On the indicated line, a dimoToken transfer is made, but the return value is
left unchecked.

Mitigation Revert with an error if the transfer fails:
if (!dimoToken.transfer(user, amount)) revert TokenTransferFailed();

24

[L] Deprecated API Call

ID SAY-10

Status Acknowledged

Risk Low

Business
Impact

Unlike grantRole(bytes32, address), _setupRole(bytes32, address)

does not perform any checks on the calling account. It has therefore been
deprecated.

Location - Reward.sol:108-111; initialize(address, address, address)

Description The function _setupRole(bytes32, address), used in the specified location,
has been deprecated in OpenZepplin 5.0. Calling grantRole(bytes32,
address) instead is now recommended.

Mitigation Replace calls to _setupRole(bytes32, address) with grantRole(bytes32,
address).

25

[I] Insufficient Event Emission

ID SAY-11

Status Fixed

Risk Informational

Business
Impact

Many monitoring tools, frontends, off-chain toolings and reporting services
rely on events to capture real time activities of contracts. Moreover,
protocols can react quickly to suspicious event emissions.

Location - Reward.sol; setRegistryContractAddress(address)
- Reward.sol; setMinimumTimeForRewards(uint256)
- Reward.sol; setSyntheticProxyAddress(address)
- Reward.sol; resetRewardsGenesisTime()
- Reward.sol; manuallySetRewardsGenesisTime()
- Reward.sol:267-268; batchTransfer(TransferInfo[])

Description The aforementioned functions do not emit events for important state
updates.

Mitigation Add event emissions.

26

[I] Solidity Versioning

ID SAY-12

Status Acknowledged

Risk Informational

Business
Impact

The contract can be compiled and tested with different compiler versions
during development and review and another different compiler version
during deployment to mainnet. This can lead to unexpected results.

Location Reward.sol:2

Description The contract specifies its pragma as pragma solidity ^0.8.13;. This allows
usage of any version of solidity starting from 0.8.13. Moreover, 0.8.13 is not
the most recent version.

Mitigation Decide on a single version of solidity to use. The latest stable (and therefore
recommended) release is 0.8.19.

27

[I] Index the week Parameter in
TokensTransferredForConnectionStreak()

ID SAY-13

Status Fixed

Risk Informational

Business
Impact

Indexing is useful for filtering events in Ethereum logs. Each indexed
parameter in an event adds a topic to the event log, making it easier to
search for specific events using those parameters.

Location - Reward.sol:81

Description The week parameter represents the currentWeek on which the airdrop was
distributed. Since indexing makes it easier for frontend applications to filter
specific events, indexing this parameter will make it easy to filter for users
that received airdrops at a given week.

Mitigation Consider indexing the specified parameter.

28

[I] Adherence to the Solidity Style Guide

ID SAY-14

Status Fixed

Risk Informational

Business
Impact

This issue is purely informational. There is no impact on the security posture
of the contract or otherwise.

Location - Reward.sol:36

Description TransferInfo[], a struct, is defined on line 36, directly after the state
variables. The Solidity style guide recommends placing struct declarations
before.

Mitigation Move the declaration of the struct directly to the beginning of the contract,
before state variables.

29

