
Metamask Snap Audit
Report for AlephZero

Testers:
1. Or Duan
2. Omri Shdaimah

1

Table of Contents
Table of Contents 2
Management Summary 3
Risk Methodology 4
Vulnerabilities by Risk 5
Approach 6

Introduction 6

Scope Overview 7

Scope Validation 7

Threat Model 7

Security Evaluation Methodology 8

Security Assessment 8

Issue Table Description 9

Security Evaluation 10
Security Assessment Findings 14

Lack of Validation in uint8ArrayFromHex(string) 14

Type Checking Is not Uniform 15

Unused Functions 16

Dependency with Outstanding Vulnerability 17

Lack of Documentation and Commenting 18

2

Management Summary

AlephZero contacted Sayfer Security in order to perform penetration testing on AlephZero’s
MetaMask Snap in November 2023.

Before assessing the above services, we held a kickoff meeting with the AlephZero technical team
and received an overview of the system and the goals for this research.

Over the research period of 2 weeks, 3 vulnerabilities were found in the system. Also, some
suggestions were added to the report for ongoing improvements.

Several fixes should be implemented following the report, but the system's security posture is
competent.

After a review by the Sayfer team, we certify that all the security issues mentioned in this
report have been addressed by the AlephZero team.

3

Risk Methodology
At Sayfer, we are committed to delivering the highest quality penetration testing to our clients.
That's why we have implemented a comprehensive risk assessment model to evaluate the severity
of our findings and provide our clients with the best possible recommendations for mitigation.

Our risk assessment model is based on two key factors: IMPACT and LIKELIHOOD. Impact refers to
the potential harm that could result from an issue, such as financial loss, reputational damage, or a
non-operational system. Likelihood refers to the probability that an issue will occur, taking into
account factors such as the complexity of the attack and the number of potential attackers.

By combining these two factors, we can create a comprehensive understanding of the risk posed by
a particular issue and provide our clients with a clear and actionable assessment of the severity of
the issue. This approach allows us to prioritize our recommendations and ensure that our clients
receive the best possible advice on how to protect their business.

Risk is defined as follows:

Overall Risk Security

HIGH Medium High High

MEDIUM Low Medium High

LOW Informational Low Medium

LOW MEDIUM HIGH

LIKELIHOOD

4

Vulnerabilities by Risk

Risk Low Medium High Informational

of issues 3 0 0 2

● Low – No direct threat exists. The vulnerability may be exploited using other vulnerabilities.
● Medium – Indirect threat to key business processes or partial threat to business processes.
● High – Direct threat to key business processes.
● Informational – This finding does not indicate vulnerability, but states a comment that

notifies about design flaws and improper implementation that might cause a problem in the
long run.

5

Approach

Introduction
AlephZero contacted Sayfer to perform penetration testing on their MetaMask Snap application.

This report documents the research carried out by Sayfer targeting the selected resources defined
under the research scope. Particularly, this report displays the security posture review for
AlephZero’s MetaMask Snap application and its surrounding infrastructure and process
implementations.

Our penetration testing project life cycle:

6

Scope Overview
During our first meeting and after understanding the company's needs, we defined the application’s
scope that resides at the following URLs as the scope of the project:

● AlephZero’s MetaMask Snap
○ Audit commit: 5e6aa033a94c69be7b2b82e875a20c69c5dd5274
○ Fixes commit: f8105a7322c13aed378fe71eaf3d4d5cf7736869

Our tests were performed from November to December 2023.

Scope Validation
We began by ensuring that the scope defined to us by the client was technically logical.
Deciding what scope is right for a given system is part of the initial discussion. Getting the scope
right is key to deriving maximum business value from the research.

Threat Model
During our kickoff meetings with the client we defined the most important assets the application
possesses.
We defined that the largest current threat to the system is the potential for malicious attackers to
steal funds from other users.

7

https://github.com/piotr-roslaniec/azero-wallet/commit/5e6aa033a94c69be7b2b82e875a20c69c5dd5274
https://github.com/piotr-roslaniec/azero-wallet/commit/f8105a7322c13aed378fe71eaf3d4d5cf7736869

Security Evaluation Methodology
Sayfer uses OWASP WSTG as our technical standard when reviewing web applications. After gaining
a thorough understanding of the system we decided which OWASP tests are required to evaluate
the system.

Security Assessment
After understanding and defining the scope, performing threat modeling, and evaluating the correct
tests required in order to fully check the application for security flaws, we performed our security
assessment.

8

https://github.com/OWASP/wstg/tree/f4fdd93e9673c087cfe2472535a808e5cdf938c5

Issue Table Description

Issue title
ID SAY-??: An ID for easy communication on each vulnerability

Status Open/Fixed/Acknowledged

Risk Represents the risk factor of the issue. For further description refer to the
Vulnerabilities by Risk section.

Business
Impact

The main risk of the vulnerability at a business level.

Location The URL or the file in which this issue was detected. Issues with no location have no
particular location and refer to the product as a whole.

Description Here we provide a brief description of the issue and how it formed, the steps we
made to find or exploit it, along with proof of concept (if present), and how this issue
can affect the product or its users.

Mitigation Suggested resolving options for this issue and links to advised sites for further
remediation.

9

https://docs.google.com/document/d/1nCIFRnB2xR5D-O0BNwRwLAhWmVEw6wCYfLLeHRYxrnQ/edit#heading=h.5bxypuyhbhg7

Security Evaluation
The following tests were conducted while auditing the system

Information
Gathering Test Name Status

WSTG-INFO-01
Conduct Search Engine Discovery Reconnaissance for
Information Leakage

Pass

WSTG-INFO-02 Fingerprint Web Server Pass

WSTG-INFO-03 Review Webserver Metafiles for Information Leakage Pass

WSTG-INFO-04 Enumerate Applications on Webserver Pass

WSTG-INFO-05 Review Webpage Content for Information Leakage Pass

WSTG-INFO-06 Identify application entry points Pass

WSTG-INFO-07 Map execution paths through application Pass

WSTG-INFO-08 Fingerprint Web Application Framework Pass

WSTG-INFO-09 Fingerprint Web Application Pass

WSTG-INFO-10 Map Application Architecture Pass

Configuration and
Deploy Management

Testing
Test Name Status

WSTG-CONF-01 Test Network Infrastructure Configuration Pass

WSTG-CONF-02 Test Application Platform Configuration Pass

WSTG-CONF-03 Test File Extensions Handling for Sensitive Information Pass

WSTG-CONF-04
Review Old Backup and Unreferenced Files for Sensitive
Information

Pass

WSTG-CONF-05
Enumerate Infrastructure and Application Admin
Interfaces

Pass

WSTG-CONF-06 Test HTTP Methods Pass

WSTG-CONF-07 Test HTTP Strict Transport Security Pass

WSTG-CONF-08 Test RIA cross domain policy Pass

WSTG-CONF-09 Test File Permission Pass

WSTG-CONF-10 Test for Subdomain Takeover Pass

WSTG-CONF-11 Test Cloud Storage Pass

Identity Management
Testing Test Name Status

WSTG-IDNT-01 Test Role Definitions Pass

10

WSTG-IDNT-02 Test User Registration Process Pass

WSTG-IDNT-03 Test Account Provisioning Process Pass

WSTG-IDNT-04
Testing for Account Enumeration and Guessable User
Account

Pass

WSTG-IDNT-05 Testing for Weak or unenforced username policy Pass

Authentication
Testing Test Name Status

WSTG-ATHN-01
Testing for Credentials Transported over an Encrypted
Channel

Pass

WSTG-ATHN-02 Testing for Default Credentials Pass

WSTG-ATHN-03 Testing for Weak Lock Out Mechanism Pass

WSTG-ATHN-04 Testing for Bypassing Authentication Schema Pass

WSTG-ATHN-05 Testing for Vulnerable Remember Password Pass

WSTG-ATHN-06 Testing for Browser Cache Weaknesses Pass

WSTG-ATHN-07 Testing for Weak Password Policy Pass

WSTG-ATHN-08 Testing for Weak Security Question Answer Pass

WSTG-ATHN-09
Testing for Weak Password Change or Reset
Functionalities

Pass

WSTG-ATHN-10 Testing for Weaker Authentication in Alternative Channel Pass

Authorization Testing Test Name Status

WSTG-ATHZ-01 Testing Directory Traversal File Include Pass

WSTG-ATHZ-02 Testing for Bypassing Authorization Schema Pass

WSTG-ATHZ-03 Testing for Privilege Escalation Pass

WSTG-ATHZ-04 Testing for Insecure Direct Object References Pass

Session Management
Testing Test Name Status

WSTG-SESS-01 Testing for Session Management Schema Pass

WSTG-SESS-02 Testing for Cookies Attributes Pass

WSTG-SESS-03 Testing for Session Fixation Pass

WSTG-SESS-04 Testing for Exposed Session Variables Pass

WSTG-SESS-05 Testing for Cross Site Request Forgery Pass

WSTG-SESS-06 Testing for Logout Functionality Pass

WSTG-SESS-07 Testing Session Timeout Pass

WSTG-SESS-08 Testing for Session Puzzling Pass

WSTG-SESS-09 Testing for Session Hijacking Pass

11

Data Validation
Testing Test Name Status

WSTG-INPV-01 Testing for Reflected Cross Site Scripting Pass

WSTG-INPV-02 Testing for Stored Cross Site Scripting Pass

WSTG-INPV-03 Testing for HTTP Verb Tampering Pass

WSTG-INPV-04 Testing for HTTP Parameter Pollution Pass

WSTG-INPV-05 Testing for SQL Injection Pass

WSTG-INPV-06 Testing for LDAP Injection Pass

WSTG-INPV-07 Testing for XML Injection Pass

WSTG-INPV-08 Testing for SSI Injection Pass

WSTG-INPV-09 Testing for XPath Injection Pass

WSTG-INPV-10 Testing for IMAP SMTP Injection Pass

WSTG-INPV-11 Testing for Code Injection Pass

WSTG-INPV-12 Testing for Command Injection Pass

WSTG-INPV-13 Testing for Format String Injection Pass

WSTG-INPV-14 Testing for Incubated Vulnerability Pass

WSTG-INPV-15 Testing for HTTP Splitting Smuggling Pass

WSTG-INPV-16 Testing for HTTP Incoming Requests Pass

WSTG-INPV-17 Testing for Host Header Injection Pass

WSTG-INPV-18 Testing for Server-side Template Injection Pass

WSTG-INPV-19 Testing for Server-Side Request Forgery Pass

Error Handling Test Name Status

WSTG-ERRH-01 Testing for Improper Error Handling Pass

WSTG-ERRH-02 Testing for Stack Traces Pass

Cryptography Test Name Status

WSTG-CRYP-01 Testing for Weak Transport Layer Security Pass

WSTG-CRYP-02 Testing for Padding Oracle Pass

WSTG-CRYP-03
Testing for Sensitive Information Sent via Unencrypted
Channels

Pass

WSTG-CRYP-04 Testing for Weak Encryption Pass

Business logic Testing Test Name Status

WSTG-BUSL-01 Test Business Logic Data Validation Pass

WSTG-BUSL-02 Test Ability to Forge Requests Pass

12

WSTG-BUSL-03 Test Integrity Checks Pass

WSTG-BUSL-04 Test for Process Timing Pass

WSTG-BUSL-05 Test Number of Times a Function Can be Used Limits Pass

WSTG-BUSL-06 Testing for the Circumvention of Work Flows Pass

WSTG-BUSL-07 Test Defenses Against Application Mis-use Pass

WSTG-BUSL-08 Test Upload of Unexpected File Types Pass

WSTG-BUSL-09 Test Upload of Malicious Files Pass

Client Side Testing Test Name Status

WSTG-CLNT-01 Testing for DOM-Based Cross Site Scripting Pass

WSTG-CLNT-02 Testing for JavaScript Execution Pass

WSTG-CLNT-03 Testing for HTML Injection Pass

WSTG-CLNT-04 Testing for Client Side URL Redirect Pass

WSTG-CLNT-05 Testing for CSS Injection Pass

WSTG-CLNT-06 Testing for Client Side Resource Manipulation Pass

WSTG-CLNT-07 Test Cross Origin Resource Sharing Pass

WSTG-CLNT-08 Testing for Cross Site Flashing Pass

WSTG-CLNT-09 Testing for Clickjacking Pass

WSTG-CLNT-10 Testing WebSockets Pass

WSTG-CLNT-11 Test Web Messaging Pass

WSTG-CLNT-12 Testing Browser Storage Pass

WSTG-CLNT-13 Testing for Cross Site Script Inclusion Pass

API Testing Test Name Status

WSTG-APIT-01 Testing GraphQL Pass

13

Security Assessment Findings

Lack of Validation in uint8ArrayFromHex(string)

ID SAY-01

Status Fixed

Risk Low

Business
Impact

Rather than raising an error when a wrong input is supplied, the function will simply
attempt the conversion and return a wrong result.

Location - packages/snap/src/utils.ts:15; uint8ArrayFromHex(string)

Description It has been found that uint8ArrayFromHex(string) does not validate whether
the input hexString, which is of type string, is actually a hexadecimal.

● uint8ArrayFromHex(string)�
export const uint8ArrayFromHex = (hexString: string) �� {

const strBytes = hexString.replace(/^0x/iu, '').match(/��/gu) �� [];

return new Uint8Array(strBytes.map((byte: string) �� parseInt(byte,

16)))

.buffer;

};

The function only replaces the "0x" characters with an empty string, as well as
converting bytes to integers. Then, the buffer is returned as a uint8 string.
Consequently, if such validation is not performed before calling the function, an
incorrect string may be processed.

Mitigation Validate that the function’s input is in fact a hexadecimal.

14

Type Checking Is not Uniform

ID SAY-02

Status Fixed

Risk Low

Business
Impact

Using the any type, the snap loses control over the initial type of the variable, which
may have consequences in the dependent logic that implements it.

Location - packages/snap/src/index.ts:21; onRpcRequest(string,
JsonRpcRequest)

- packages/snap/src/services/storage.ts:6

Description any type casting was sometimes used throughout the snap. This is considered a bad
security practice, since it deprives us of important type information and may
consequently lead to unexpected runtime errors when unexpected types are used.

Mitigation When unsure about a type, they should be defined down using "unknown", and then
narrowed down by type guards.

15

Unused Functions

ID SAY-03

Status Fixed

Risk Low

Business
Impact

Unused functions may imply that some logic has not yet been created or has been
forgotten, as well as adding unnecessary code volume.

Location - packages/snap/src/utils.ts; getRandomBytes(number),
uint8ArrayFromHex(string), sha256(string)

Description While examining the code, we noticed that none of the functions in utils.ts are
implemented anywhere in the codebase. The specified functions all have content,
but are never called, making their presence in the code seemingly unnecessary.

This may be due to future code development, scrapping of certain functionalities, or
a bug.

Mitigation Make sure that the specified functions are necessary, and if they are, make sure to
use them.

16

Dependency with Outstanding Vulnerability

ID SAY-04

Status Fixed

Risk Informational

Business
Impact

The relevant package is a third-order subdependency of
@metamask/snaps�cli@1.0.2, so upgrading it is not your responsibility and it’s
hard to assess the exact impact. But nevertheless, it is important to be aware of
such risks, and to keep your direct dependencies always on the latest version.
Therefore, we decided to include this finding as informational.

Location —

Description By running pnpm audit, we found out that one subdependency of your project,
browserify�sign@4.2.1, is associated with a high risk vulnerability that may be
relevant to your project.

Mitigation Update @metamask/snaps�cli@1.0.2 as soon as possible and periodically run
pnpm audit.

17

https://github.com/advisories/GHSA-x9w5-v3q2-3rhw

Lack of Documentation and Commenting

ID SAY-05

Status Acknowledged

Risk Informational

Business
Impact

The lack of proper documentation and commenting may be perceived as
unprofessional by some users. Users may also be weary about installing a snap
whose exact functionality they do not quite understand.

Location —

Description The README file and several generic articles are the only materials describing the
snap and its functionalities. Additionally, these articles do not match the code and
function names that are implemented.

Mitigation Write a proper readme and make sure to comment the code.

18

