
Metamask Snap Audit
Report for Galactica

Testers:
1. Or Duan
2. Omri Shdaimah
3. Avigdor Sason Cohen

1

Table of Contents
Table of Contents 2
Management Summary 3
Risk Methodology 4
Vulnerabilities by Risk 5
Approach 6

Introduction 6

Scope Overview 7

Scope Validation 7

Threat Model 7

Security Evaluation Methodology 8

Security Assessment 8

Issue Table Description 9

Security Evaluation 10
Security Assessment Findings 14

Non-functional Demo Samples 14

Unused Functions 16

Commented Code and Leftover TODOs 17

Missing URL Validation 18

2

Management Summary

Galactica contacted Sayfer Security in order to perform a code audit on Galactica’s MetaMask Snap
in October 2023.

Before assessing the above services, we held a kickoff meeting with the Galactica technical team and
received an overview of the system and the goals for this research.

Over the research period of 2 weeks, we discovered 3 vulnerabilities in the system and added 1
informational note.

In conclusion, several fixes should be implemented following the report, but the system's security
posture is competent.

After a review by the Sayfer team, we certify that all the security issues mentioned in this
report have been addressed by the Galactica team.

3

Risk Methodology
At Sayfer, we are committed to delivering the highest quality penetration testing to our clients.
That's why we have implemented a comprehensive risk assessment model to evaluate the severity
of our findings and provide our clients with the best possible recommendations for mitigation.

Our risk assessment model is based on two key factors: IMPACT and LIKELIHOOD. Impact refers to
the potential harm that could result from an issue, such as financial loss, reputational damage, or a
non-operational system. Likelihood refers to the probability that an issue will occur, taking into
account factors such as the complexity of the attack and the number of potential attackers.

By combining these two factors, we can create a comprehensive understanding of the risk posed by
a particular issue and provide our clients with a clear and actionable assessment of the severity of
the issue. This approach allows us to prioritize our recommendations and ensure that our clients
receive the best possible advice on how to protect their business.

Risk is defined as follows:

Overall Risk Security

HIGH Medium High High

MEDIUM Low Medium High

LOW Informational Low Medium

LOW MEDIUM HIGH

LIKELIHOOD

4

Vulnerabilities by Risk

Risk Low Medium High Informational

of issues 2 1 0 1

● Low – No direct threat exists. The vulnerability may be exploited using other vulnerabilities.
● Medium – Indirect threat to key business processes or partial threat to business processes.
● High – Direct threat to key business processes.
● Informational – This finding does not indicate vulnerability, but states a comment that

notifies about design flaws and improper implementation that might cause a problem in the
long run.

5

Approach

Introduction
Galactica contacted Sayfer to perform penetration testing on their MetaMask Snap application.

This report documents the research carried out by Sayfer targeting the selected resources defined
under the research scope. Particularly, this report displays the security posture review for Galactica’s
MetaMask Snap application and its surrounding infrastructure and process implementations.

Our penetration testing project life cycle:

6

Scope Overview
During our first meeting and after understanding the company's needs, we defined the application’s
scope that resides at the following URLs as the scope of the project:

● Galactica’s Snap
○ Audit Commit: bd4e35e1dcafda2c5673687d6d185090fd3321c0
○ Fixes Commit: b78b8c460da8982e7f24deeffbf8deadf8f90084

Our tests were performed in October 2023.

Scope Validation
We began by ensuring that the scope defined to us by the client was technically logical.
Deciding what scope is right for a given system is part of the initial discussion. Getting the scope
right is key to deriving maximum business value from the research.

Threat Model
During our kickoff meetings with the client we defined the most important assets the application
possesses.
We defined that the largest current threat to the system is stolen user funds.

7

https://github.com/Galactica-corp/galactica-monorepo/commit/bd4e35e1dcafda2c5673687d6d185090fd3321c0
https://github.com/Galactica-corp/galactica-monorepo/tree/b78b8c460da8982e7f24deeffbf8deadf8f90084

Security Evaluation Methodology
Sayfer uses OWASP WSTG as our technical standard when reviewing web applications. After gaining
a thorough understanding of the system we decided which OWASP tests are required to evaluate
the system.

Security Assessment
After understanding and defining the scope, performing threat modeling, and evaluating the correct
tests required in order to fully check the application for security flaws, we performed our security
assessment.

8

https://github.com/OWASP/wstg/tree/f4fdd93e9673c087cfe2472535a808e5cdf938c5

Issue Table Description

Issue title
ID SAY-??: An ID for easy communication on each vulnerability

Status Open/Fixed/Acknowledged

Risk Represents the risk factor of the issue. For further description refer to the
Vulnerabilities by Risk section.

Business
Impact

The main risk of the vulnerability at a business level.

Location The URL or the file in which this issue was detected. Issues with no location have no
particular location and refer to the product as a whole.

Description Here we provide a brief description of the issue and how it formed, the steps we
made to find or exploit it, along with proof of concept (if present), and how this issue
can affect the product or its users.

Mitigation Suggested resolving options for this issue and links to advised sites for further
remediation.

9

https://docs.google.com/document/d/1nCIFRnB2xR5D-O0BNwRwLAhWmVEw6wCYfLLeHRYxrnQ/edit#heading=h.5bxypuyhbhg7

Security Evaluation
The following tests were conducted while auditing the system

Information
Gathering Test Name Status

WSTG-INFO-01
Conduct Search Engine Discovery Reconnaissance for
Information Leakage

Pass

WSTG-INFO-02 Fingerprint Web Server Pass

WSTG-INFO-03 Review Webserver Metafiles for Information Leakage Pass

WSTG-INFO-04 Enumerate Applications on Webserver Pass

WSTG-INFO-05 Review Webpage Content for Information Leakage Pass

WSTG-INFO-06 Identify application entry points Pass

WSTG-INFO-07 Map execution paths through application Pass

WSTG-INFO-08 Fingerprint Web Application Framework Pass

WSTG-INFO-09 Fingerprint Web Application Pass

WSTG-INFO-10 Map Application Architecture Pass

Configuration and
Deploy Management

Testing
Test Name Status

WSTG-CONF-01 Test Network Infrastructure Configuration Pass

WSTG-CONF-02 Test Application Platform Configuration Pass

WSTG-CONF-03 Test File Extensions Handling for Sensitive Information Pass

WSTG-CONF-04
Review Old Backup and Unreferenced Files for Sensitive
Information

Pass

WSTG-CONF-05
Enumerate Infrastructure and Application Admin
Interfaces

Pass

WSTG-CONF-06 Test HTTP Methods Pass

WSTG-CONF-07 Test HTTP Strict Transport Security Pass

WSTG-CONF-08 Test RIA cross domain policy Pass

WSTG-CONF-09 Test File Permission Pass

WSTG-CONF-10 Test for Subdomain Takeover Pass

WSTG-CONF-11 Test Cloud Storage Pass

Identity Management
Testing Test Name Status

WSTG-IDNT-01 Test Role Definitions Pass

10

WSTG-IDNT-02 Test User Registration Process Pass

WSTG-IDNT-03 Test Account Provisioning Process Pass

WSTG-IDNT-04
Testing for Account Enumeration and Guessable User
Account

Pass

WSTG-IDNT-05 Testing for Weak or unenforced username policy Pass

Authentication
Testing Test Name Status

WSTG-ATHN-01
Testing for Credentials Transported over an Encrypted
Channel

Pass

WSTG-ATHN-02 Testing for Default Credentials Pass

WSTG-ATHN-03 Testing for Weak Lock Out Mechanism Pass

WSTG-ATHN-04 Testing for Bypassing Authentication Schema Pass

WSTG-ATHN-05 Testing for Vulnerable Remember Password Pass

WSTG-ATHN-06 Testing for Browser Cache Weaknesses Pass

WSTG-ATHN-07 Testing for Weak Password Policy Pass

WSTG-ATHN-08 Testing for Weak Security Question Answer Pass

WSTG-ATHN-09
Testing for Weak Password Change or Reset
Functionalities

Pass

WSTG-ATHN-10 Testing for Weaker Authentication in Alternative Channel Pass

Authorization Testing Test Name Status

WSTG-ATHZ-01 Testing Directory Traversal File Include Pass

WSTG-ATHZ-02 Testing for Bypassing Authorization Schema Pass

WSTG-ATHZ-03 Testing for Privilege Escalation Pass

WSTG-ATHZ-04 Testing for Insecure Direct Object References Pass

Session Management
Testing Test Name Status

WSTG-SESS-01 Testing for Session Management Schema Pass

WSTG-SESS-02 Testing for Cookies Attributes Pass

WSTG-SESS-03 Testing for Session Fixation Pass

WSTG-SESS-04 Testing for Exposed Session Variables Pass

WSTG-SESS-05 Testing for Cross Site Request Forgery Pass

WSTG-SESS-06 Testing for Logout Functionality Pass

WSTG-SESS-07 Testing Session Timeout Pass

WSTG-SESS-08 Testing for Session Puzzling Pass

WSTG-SESS-09 Testing for Session Hijacking Pass

11

Data Validation
Testing Test Name Status

WSTG-INPV-01 Testing for Reflected Cross Site Scripting Pass

WSTG-INPV-02 Testing for Stored Cross Site Scripting Pass

WSTG-INPV-03 Testing for HTTP Verb Tampering Pass

WSTG-INPV-04 Testing for HTTP Parameter Pollution Pass

WSTG-INPV-05 Testing for SQL Injection Pass

WSTG-INPV-06 Testing for LDAP Injection Pass

WSTG-INPV-07 Testing for XML Injection Pass

WSTG-INPV-08 Testing for SSI Injection Pass

WSTG-INPV-09 Testing for XPath Injection Pass

WSTG-INPV-10 Testing for IMAP SMTP Injection Pass

WSTG-INPV-11 Testing for Code Injection Pass

WSTG-INPV-12 Testing for Command Injection Pass

WSTG-INPV-13 Testing for Format String Injection Pass

WSTG-INPV-14 Testing for Incubated Vulnerability Pass

WSTG-INPV-15 Testing for HTTP Splitting Smuggling Pass

WSTG-INPV-16 Testing for HTTP Incoming Requests Pass

WSTG-INPV-17 Testing for Host Header Injection Pass

WSTG-INPV-18 Testing for Server-side Template Injection Pass

WSTG-INPV-19 Testing for Server-Side Request Forgery Pass

Error Handling Test Name Status

WSTG-ERRH-01 Testing for Improper Error Handling Pass

WSTG-ERRH-02 Testing for Stack Traces Pass

Cryptography Test Name Status

WSTG-CRYP-01 Testing for Weak Transport Layer Security Pass

WSTG-CRYP-02 Testing for Padding Oracle Pass

WSTG-CRYP-03
Testing for Sensitive Information Sent via Unencrypted
Channels

Pass

WSTG-CRYP-04 Testing for Weak Encryption Pass

Business logic Testing Test Name Status

WSTG-BUSL-01 Test Business Logic Data Validation Pass

WSTG-BUSL-02 Test Ability to Forge Requests Pass

12

WSTG-BUSL-03 Test Integrity Checks Pass

WSTG-BUSL-04 Test for Process Timing Pass

WSTG-BUSL-05 Test Number of Times a Function Can be Used Limits Pass

WSTG-BUSL-06 Testing for the Circumvention of Work Flows Pass

WSTG-BUSL-07 Test Defenses Against Application Mis-use Pass

WSTG-BUSL-08 Test Upload of Unexpected File Types Pass

WSTG-BUSL-09 Test Upload of Malicious Files Pass

Client Side Testing Test Name Status

WSTG-CLNT-01 Testing for DOM-Based Cross Site Scripting Pass

WSTG-CLNT-02 Testing for JavaScript Execution Pass

WSTG-CLNT-03 Testing for HTML Injection Pass

WSTG-CLNT-04 Testing for Client Side URL Redirect Pass

WSTG-CLNT-05 Testing for CSS Injection Pass

WSTG-CLNT-06 Testing for Client Side Resource Manipulation Pass

WSTG-CLNT-07 Test Cross Origin Resource Sharing Pass

WSTG-CLNT-08 Testing for Cross Site Flashing Pass

WSTG-CLNT-09 Testing for Clickjacking Pass

WSTG-CLNT-10 Testing WebSockets Pass

WSTG-CLNT-11 Test Web Messaging Pass

WSTG-CLNT-12 Testing Browser Storage Pass

WSTG-CLNT-13 Testing for Cross Site Script Inclusion Pass

API Testing Test Name Status

WSTG-APIT-01 Testing GraphQL Pass

13

Security Assessment Findings

Non-functional Demo Samples

ID SAY-01

Status Fixed

Risk Medium

Business
Impact

Incorrect operation of Snap features implemented in the demo example may mean
that individual functionalities are not working properly, which may impact Snap
operation in production mode and require fixes.

Location —

Description A few of the examples available in the demo version of the dApp do not work
properly. They return errors related to incorrect function calls, gas calculations, as
well as messages that are not obvious to non-technical users.

● simple zkKYC test (repeatable):

● Import zkCert:

Mitigation We suggest that you verify the reason for the errors in the console as well as in the
demo example screen. It’s important to verify whether similar errors crop up in
production and disrupt normal functionality.

14

Unused Functions

ID SAY-02

Status Fixed

Risk Low

Business
Impact

Unused functions can reduce code readability and may be perceived as
unprofessional by readers if present in production code.

Location - packages/snap/src/utils.ts:8-10; shortenAddrStr(string)

Description The utility function specified in the location field does not appear to be used
anywhere.

Mitigation Consider removing it from production code if you don’t intend to use it.

15

Commented Code and Leftover TODOs

ID SAY-03

Status Fixed

Risk Low

Business
Impact

TODOs in production code may be perceived as unprofessional by readers.

Location - packages/snap/src/proofGenerator.ts:82
- packages/snap/src/merkleProofSelection.ts:100

Description We found a few commented lines of code, including old TODOs, in the specified
locations.

Mitigation If you do not intended to use these lines, remove them from the code, at least in
production environment.

16

Missing URL Validation

ID SAY-04

Status Fixed

Risk Informational

Business
Impact

Changing the URL to an incorrect value may break snap functionality without an
informative error message.

Location - snap/src/index.ts:458; processRpcRequest()

Description RpcMethods.UpdateMerkleProofURL() accepts the URL value as a string and
does not perform any validation of its correctness. Theoretically, any string of
characters will be qualified as a URL and saved in state. When invoked, JavaScript will
of course return an unhandled error, because the format of this string will not be
compatible with the function sending the request, e.g. fetch().

Mitigation We suggest implementing basic validation for urlUpdateParams.url. For example,
by verifying that it starts with https:// and ends with /.

17

