

 Bridge Audit Report for
GoodDollar

Testers

1. Or Duan
2. Omri Shdaimah
3. Avigdor Sason Cohen

Table of Contents
Table of Contents 2

Management Summary 3

Vulnerabilities by Risk 4

Approach 5
Introduction 5
Scope Overview 5
Scope Validation 5
Threat Model 5
Protocol Introduction 6

Security Evaluation 7

Audit Findings 14

Management Summary

GoodDollar contacted Sayfer to perform a security audit on their bridge on-chain smart
contracts and off-chain agents.

This report documents the research carried out by Sayfer targeting the selected resources
defined under the research scope. Particularly, this report displays the security posture
review for GoodDollar bridge on-chain smart contracts and off-chain agents.

Over the audit period of 4 weeks, we discovered 0 vulnerabilities in the codebase. We
found that all the bridge components have a clean and well-structured code, and after
deep and thorough research we haven’t found any security issues.

Vulnerabilities by Risk

Risk Informational Low Medium High Critical

of issues 0 0 0 0 0

● Critical - Immediate or ongoing part of the business being exploited with direct key
business losses.

● High – Direct threat to key business processes.
● Medium – Indirect threat to key business processes or partial threat to business

processes.
● Low – No direct threat exists. The vulnerability may be exploited using other

vulnerabilities.
● Informational – This finding does not indicate vulnerability, but states a comment

that notifies about design flaws and improper implementation that might cause a
problem in the long run.

Approach

Introduction
GoodDollar contacted Sayfer to perform a security audit on the bridge component.

This report documents the research carried out by Sayfer targeting the selected resources
defined under the research scope. Particularly, this report displays the security posture
review for the aforementioned contracts.

Scope Overview
Together with the GoodDollar team we define that the scope of the project will be:

1. GoodDollar bridge, including off-chain agent and on-chain smart contract on this
repository up to commit b41c9d6703434be7fbdd89d7b757904757f3b8e0

Our tests were performed between November 11th to December 11th, 2022.

Scope Validation
We began by ensuring that the scope defined to us by the client was technically logical.
Deciding what scope is right for a given system is part of the initial discussion.

Threat Model
We defined that the largest current threat to the system is the ability of malicious users to
steal funds from the on-chain or off-chain code.

https://github.com/GoodDollar/GoodBridge/

Protocol Overview

Protocol Introduction
The GoodDollar protocol is a community-driven, distributed framework designed to
generate, fund, and distribute global basic income via the GoodDollar token (hereafter
“G$”). G$ is an ERC-20 digital asset built on the Ethereum blockchain that operates within
the emerging ecosystem of decentralized and open finance. GoodDollar leverages new
protocols and smart contracts across the ecosystem to deliver its basic income economy.

Security Evaluation
The following test cases were the guideline while auditing the system. This checklist is a
modified version of the SCSVS v1.2, with improved grammar, clarity, conciseness, and
additional criteria. Where there is a gap in the numbering, an original criterion was
removed. Criteria that are marked with an asterisk were added by us.

Architecture,
Design and

Threat Modeling
Test Name

G1.2 Every introduced design change is preceded by threat modeling.

G1.3
The documentation clearly and precisely defines all trust boundaries in the contract
(trusted relations with other contracts and significant data flows).

G1.4
The SCSVS, security requirements or policy is available to all developers and
testers.

G1.5 The events for the (state changing/crucial for business) operations are defined.

G1.6
The project includes a mechanism that can temporarily stop sensitive
functionalities in case of an attack. This mechanism should not block users’ access
to their assets (e.g. tokens).

G1.7
The amount of unused cryptocurrencies kept on the contract is controlled and at
the minimum acceptable level so as not to become a potential target of an attack.

G1.8 If the fallback function can be called by anyone, it is included in the threat model.

G1.9
Business logic is consistent. Important changes in the logic should be applied in all
contracts.

G1.10 Automatic code analysis tools are employed to detect vulnerabilities.
G1.11 The latest major release of Solidity is used.

G1.12
When using an external implementation of a contract, the most recent version is
used.

G1.13
When functions are overridden to extend functionality, the super keyword is used
to maintain previous functionality.

G1.14 The order of inheritance is carefully specified.
G1.15 There is a component that monitors contract activity using events.
G1.16 The threat model includes whale transactions.

G1.17
The leakage of one private key does not compromise the security of the entire
project.

Policies and
Procedures

Test Name

G2.2 The system's security is under constant monitoring (e.g. the expected level of

https://github.com/securing/SCSVS/tree/master/1.2

funds).

G2.3
There is a policy to track new security vulnerabilities and to update libraries to the
latest secure version.

G2.4
The security department can be publicly contacted and that the procedure for
handling reported bugs (e.g., thorough bug bounty) is well-defined.

G2.5 The process of adding new components to the system is well defined.

G2.6
The process of major system changes involves threat modeling by an external
company.

G2.7
The process of adding and updating components to the system includes a security
audit by an external company.

G2.8 In the event of a hack, there’s a clear and well known mitigation procedure in place.

G2.9
The procedure in the event of a hack clearly defines which persons are to execute
the required actions.

G2.10
The procedure includes alarming other projects about the hack through trusted
channels.

G2.11 A private key leak mitigation procedure is defined.

Upgradability Test Name

G2.2
Before upgrading, an emulation is made in a fork of the main network and
everything works as expected on the local copy.

G2.3
The upgrade process is executed by a multisig contract where more than one
person must approve the operation.

G2.4
Timelocks are used for important operations so that the users have time to
observe upcoming changes (please note that removing potential vulnerabilities in
this case may be more difficult).

G2.5 initialize() can only be called once.

G2.6
initialize() can only be called by an authorized role through appropriate modifiers
(e.g. initializer, onlyOwner).

G2.7 The update process is done in a single transaction so that no one can front-run it.
G2.8 Upgradeable contracts have reserved gap on slots to prevent overwriting.

G2.9
The number of reserved (as a gap) slots has been reduced appropriately if new
variables have been added.

G2.10
There are no changes in the order in which the contract state variables are
declared, nor their types.

G2.11
New values returned by the functions are the same as in previous versions of the
contract (e.g. owner(), balanceOf(address)).

G2.12 The implementation is initialized.
G2.13 The implementation can't be destroyed.

Business Logic Test Name

G4.2
The contract logic and protocol parameters implementation corresponds to the
documentation.

G4.3
The business logic proceeds in a sequential step order and it is not possible to skip
steps or to do it in a different order than designed.

G4.4 The contract has correctly enforced business limits.

G4.5
The business logic does not rely on the values retrieved from untrusted contracts
(especially when there are multiple calls to the same contract in a single flow).

G4.6 The business logic does not rely on the contract’s balance (e.g., balance == 0).
G4.7 Sensitive operations do not depend on block data (e.g., block hash, timestamp).

G4.8
The contract uses mechanisms that mitigate transaction-ordering (front-running)
attacks (e.g. pre-commit schemes).

G4.9
The contract does not send funds automatically, but lets users withdraw funds in
separate transactions instead.

Access Control Test Name

G5.2
The principle of the least privilege is upheld. Other contracts should only be able to
access functions and data for which they possess specific authorization.

G5.3
New contracts with access to the audited contract adhere to the principle of
minimum rights by default. Contracts should have a minimal or no permissions
until access to the new features is explicitly granted.

G5.4
The creator of the contract complies with the principle of the least privilege and
their rights strictly follow those outlined in the documentation.

G5.5
The contract enforces the access control rules specified in a trusted contract,
especially if the dApp client-side access control is present and could be bypassed.

G5.6 Calls to external contracts are only allowed if necessary.

G5.7
Modifier code is clear and simple. The logic should not contain external calls to
untrusted contracts.

G5.8
All user and data attributes used by access controls are kept in trusted contracts
and cannot be manipulated by other contracts unless specifically authorized.

G5.9 the access controls fail securely, including when a revert occurs.

G5.10
If the input (function parameters) is validated, the positive validation approach
(whitelisting) is used where possible.

Communication Test Name

G6.2
Libraries that are not part of the application (but the smart contract relies on to
operate) are identified.

G6.3 Delegate call is not used with untrusted contracts.

G6.4 Third party contracts do not shadow special functions (e.g. revert).

G6.5
The contract does not check whether the address is a contract using extcodesize
opcode.

G6.6
Re-entrancy attacks are mitigated by blocking recursive calls from other contracts
and following the Check-Effects-Interactions pattern. Do not use the send function
unless it is a must.

G6.7
The result of low-level function calls (e.g. send, delegatecall, call) from other
contracts is checked.

G6.8
Contract relies on the data provided by the right sender and does not rely on
tx.origin value.

Arithmetic Test Name

G7.2
The values and math operations are resistant to integer overflows. Use SafeMath
library for arithmetic operations before solidity 0.8.*.

G7.3
the unchecked code snippets from Solidity ≥ 0.8.* do not introduce integer

under/overflows.

G7.4
Extreme values (e.g. maximum and minimum values of the variable type) are
considered and do not change the logic flow of the contract.

G7.5 Non-strict inequality is used for balance equality.
G7.6 Correct orders of magnitude are used in the calculations.
G7.7 In calculations, multiplication is performed before division for accuracy.

G7.8
The contract does not assume fixed-point precision and uses a multiplier or store
both the numerator and denominator.

Denial of
Service

Test Name

G8.2 The contract does not iterate over unbound loops.

G8.3
Self-destruct functionality is used only if necessary. If it is included in the contract, it
should be clearly described in the documentation.

G8.4 The business logic isn't blocked if an actor (e.g. contract, account, oracle) is absent.

G8.5
The business logic does not disincentivize users to use contracts (e.g. the cost of
transaction is higher than the profit).

G8.6 Expressions of functions assert or require have a passing variant.

G8.7
If the fallback function is not callable by anyone, it is not blocking contract
functionalities.

G8.8 There are no costly operations in a loop.
G8.9 There are no calls to untrusted contracts in a loop.

G8.10
If there is a possibility of suspending the operation of the contract, it is also
possible to resume it.

G8.11 If whitelists and blacklists are used, they do not interfere with normal operation of

the system.
G8.12 There is no DoS caused by overflows and underflows.

Blockchain Data Test Name

G9.2
Any saved data in contracts is not considered secure or private (even private
variables).

G9.3
No confidential data is stored in the blockchain (passwords, personal data, token
etc.).

G9.4
Contracts do not use string literals as keys for mappings. Global constants are used
instead to prevent Homoglyph attack.

G9.5
Contract does not trivially generate pseudorandom numbers based on the
information from blockchain (e.g. seeding with the block number).

Gas Usage and

Limitations
Test Name

G10.2
Gas usage is anticipated, defined and has clear limitations that cannot be
exceeded. Both code structure and malicious input should not cause gas
exhaustion.

G10.3
Function execution and functionality does not depend on hard-coded gas fees (they
are bound to vary).

Clarity and
Readability

Test Name

G11.2 The logic is clear and modularized in multiple simple contracts and functions.

G11.3
Each contract has a short 1-2 sentence comment that explains its purpose and
functionality.

G11.4
Off-the-shelf implementations are used, this is made clear in comment. If these
implementations have been modified, the modifications are noted throughout the
contract.

G11.5
The inheritance order is taken into account in contracts that use multiple
inheritance and shadow functions.

G11.6
Where possible, contracts use existing tested code (e.g. token contracts or
mechanisms like ownable) instead of implementing their own.

G11.7 Consistent naming patterns are followed throughout the project.
G11.8 Variables have distinctive names.
G11.9 All storage variables are initialized.

G11.10 Functions with specified return type return a value of that type.
G11.11 All functions and variables are used.
G11.12 require is used instead of revert in if statements.

G11.13
The assert function is used to test for internal errors and the require function is
used to ensure a valid condition in input from users and external contracts.

G11.14 Assembly code is only used if necessary.

Test Coverage Test Name

G12.2 Abuse narratives detailed in the threat model are covered by unit tests.

G12.3
Sensitive functions in verified contracts are covered with tests in the development
phase.

G12.4
Implementation of verified contracts has been checked for security vulnerabilities
using both static and dynamic analysis.

G12.5 Contract specification has been formally verified.

G12.6
The specification and results of the formal verification is included in the
documentation.

Decentralized

Finance
Test Name

G14.1
The lender's contract does not assume its balance (used to confirm loan
repayment) to be changed only with its own functions.

G14.2

Functions that change lenders’ balance and/or lend cryptocurrency are non-re-
entrant if the smart contract allows borrowing the main platform's cryptocurrency
(e.g. Ethereum). It blocks the attacks that update the borrower's balance during the
flash loan execution.

G14.3
Flash loan functions can only call predefined functions on the receiving contract. If
it is possible, define a trusted subset of contracts to be called. Usually, the sending
(borrowing) contract is the one to be called back.

G14.4

If it includes potentially dangerous operations (e.g. sending back more ETH/tokens
than borrowed), the receiver's function that handles borrowed ETH or tokens can
be called only by the pool and within a process initiated by the receiving contract’s
owner or another trusted source (e.g. multisig).

G14.5

Calculations of liquidity pool share are performed with the highest possible
precision (e.g. if the contribution is calculated for ETH it should be done with 18
digit precision - for Wei, not Ether). The dividend must be multiplied by the 10 to
the power of the number of decimal digits (e.g. dividend * 10^18 / divisor).

G14.6
Rewards cannot be calculated and distributed within the same function call that
deposits tokens (it should also be defined as non-re-entrant). This protects from
momentary fluctuations in shares.

G14.7
Governance contracts are protected from flash loan attacks. One possible
mitigation technique is to require the process of depositing governance tokens and
proposing a change to be executed in different transactions included in different

blocks.

G14.8
When using on-chain oracles, contracts are able to pause operations based on the
oracles’ result (in case of a compromised oracle).

G14.9

External contracts (even trusted ones) that are allowed to change the attributes of
a project contract (e.g. token price) have the following limitations implemented:
thresholds for the change (e.g. no more/less than 5%) and a limit of updates (e.g.
one update per day).

G14.10
Contract attributes that can be updated by the external contracts (even trusted
ones) are monitored (e.g. using events) and an incident response procedure is
implemented (e.g. during an ongoing attack).

G14.11
Complex math operations that consist of both multiplication and division
operations first perform multiplications and then division.

G14.12
When calculating exchange prices (e.g. ETH to token or vice versa), the numerator
and denominator are multiplied by the reserves (see the getInputPrice function in
the UniswapExchange contract).

Audit Findings

While conducting the audit on both bridge on-chain smart contracts and off-chain agents,
we found that all the bridge components have a clean and well-structured code, and after
deep and thorough research we haven’t found any security issues.

