
Smart Contract Auditing for
ZenPool

Testers
1. Or Duan
2. Omri Shdaimah

1

Table of Contents
Table of Contents 2

Management Summary 3

System Overview 4

Vulnerabilities by severity 5

Scope and Contracts 7

Smart Contract Auditing Findings 8
Users Can Withdraw Funds From Other Balances Until the Pool Is Empty 8
Unsafe selfdestruct in Proxy Contract 10
User’s Pools are Subjected to MEV Attacks 11
Lack of Guardian Mitigation 12
Disallow Zero Amount Transfers 16
Insufficient Logging for Privileged Functions 17
Redundant Condition Checking 18
Naming Inconsistency 19

2

Management Summary
ZenPool team contacted Sayfer Security in order to perform a full security audit for all their contracts.

Before assessing these services we held a kickoff meeting with ZenPool’s technical team and received an overview of the
system and the goals for this assessment.

The following audit took 20 man-days to complete, all on-chain contracts were reviewed line by line with at least 2 auditors per
contract. Due to time constraints from the client-side, we reviewed off-chain components and took a best-effort approach to
make sure they do not contain any critical vulnerabilities.

We found a total of 9 findings, 3 of which were classified as “high” risk vulnerabilities and could be exploitable by malicious
attackers, who could empty the pool’s funds completely.
We documented our process and our suggestions for how each vulnerability should be fixed. ZenPool’s team implemented
the fixes which were documented in every vulnerability section.

3

System Overview
ZenPool is an open-source, non-custodial token and lending market protocol.

Users can deposit their crypto assets to earn interest or borrow other tokens to pay interest in ZenPool's market.
ZenPool has its own token called ZEN.

ZEN is a free-floating currency backed by the stable coin BUSD treasury supply. ZEN tokens can only be minted and burned by
the protocol, only in response to price does the protocol do so. Each ZEN is supported by at least one BUSD.
If the price of ZEN falls below 1 BUSD, the protocol buys and burns ZEN, pushing the price back up to 1 BUSD.

ZenPool also supports bonds which are another way to increase its treasury. The protocol sells bonds in exchange for various
assets, and in exchange, the buyer receives ZEN at a significantly reduced price. This boosts the treasury and allows ZeenPool
to provide incredible yields to its customers.

Finally, a portion of all ZenPool product fees will be used as additional backing, potentially providing ZenPool’s token with an
infinite runway for staking rewards.

4

Vulnerabilities by severity

Low Medium High Informational

1 2 3 3

High
● Transaction DoS
● direct loss of funds
● permanent freezing of funds

Medium
● Attacks against thin clients
● Partially DoS
● Gas attacks

Low
● Best practices

Informational
● Does not harm the system, and we don’t

have enough data or knowledge to prove it
will ever do any harm, yet it is important to
share our concerns.

5

Scope and Contracts
As part of the project scoping and to understand our clients' focus and needs, we defined the contracts we should test on this
audit. Together we found the best balance that suits this specific project.

The scope is a soft scope by definition, meaning we could test on a local environment other contracts that might be interacting
with the contract that is defined as the audit’s scope. This gives us the flexibility to find security issues that might be
overlooked otherwise.

The list of contracts and their Github commit:

Commit Hash Contract

5d253cb3c544a17399e7d2f4c381a1065bcfa0a0 https://github.com/zenpoolproject/zenpool/tree/master/contracts/createGovernor.sol

3887cd307163d130477d4805e74ade11f84d7a4d https://github.com/zenpoolproject/zenpool/tree/master/contracts/ZenPoolUserManager.sol

a50062dfc63a0e82ec43de98865420193270236a https://github.com/zenpoolproject/zenpool/tree/master/contracts/ZenPoolManager.sol

c4d0db2f9fbfc3146a1a1a797e55c3f3d7a19899 https://github.com/zenpoolproject/zenpool/tree/master/contracts/ZenTickets.sol

844132ae5210cb27101bf4a415d9c16e201e1afc https://github.com/zenpoolproject/zenpool/tree/master/contracts/ZenPoolFunds.sol

a70146c5d276f933a79c567d2e96512302a6a940 https://github.com/zenpoolproject/zenpool/tree/master/contracts/ZenGovernorAlpha.sol

d476137af592fe71cae2578a62e2f8f92b335d8c https://github.com/zenpoolproject/zenpool/tree/master/contracts/ZenLendingPool.sol

8c5d858ad7fbfe856cd23160fd8810997f3fdf70 https://github.com/zenpoolproject/zenpool/tree/master/contracts/ZenGovernorAlpha.sol

6

Smart Contract Auditing Findings
Users Can Withdraw Funds From Other Balances Until the Pool Is Empty

Contract contracts/ZenPoolFunds.sol

Risk High

Fixed Yes

Found by Manual Testing

Description The withdrawFunds function validates that the user can only withdraw the maximum amount in his balance, checked
by its address and later compared within the token pool.

function withdrawFunds(address _addrs, address _tkn, uint256 _amount) external returns(uint256)

{

require(_amount <= getMaxWithdrawForAddress(_tkn, _addrs), "Balance too low.");

uint256 TLV = config.tokenInfo().getLTV(_tkn);

Later the withdrawn amount is deducted from the user's current max borrow at the current price. If the total amount
of borrowed funds by the user exceeds the new max borrow, the method fails because the user no longer has
enough collateral to support their borrow position. This requirement, however, is only checked if the user is not
already over-leveraged:

if(getBorrowFunds(_addrs) <= getMaxBorrow(_addrs))

require(

getBorrowFunds(_addrs) <= getMaxBorrow(_addrs).sub(

7

_amount.mul(config.tokenInfoRegistry().priceFromAddress(_tkn))

.mul(borrowLTV).div(Utils.getDivisor(address(config), _tkn)).div(100)

), "Insufficient funds when withdraw.");

An attacker could use this functionality to exploit the withdrawFunds function to withdraw more than the max borrow
amount.
He could do that because the getMaxBorrow will only be checked if the user borrows less than the maximum amount
he is allowed, in a variety of scenarios the attacker could abuse the flow to skip this specific require, allowing him to
call the withdrawFund multiple times until the pool will get emptied.

Mitigation Change the require to be called before line 145 so it does not depend on the if statement.
This way the require will always be executed.

8

Unsafe selfdestruct in Proxy Contract

Contract contracts/ZenTickets.sol
contracts/ZenPoolManager.sol

Risk High

Fixed Yes

Found by Manual Testing

Description When the main ZenPoolManager is deployed, it also deploys multiple contracts as well.
One of them is the ZenTickets contract which is mostly secured, except for the destoryContract function which has no
ACL mechanism in place like the rest of the functions:

function destroyContract(address payable addr) external {

selfdestruct(addr);

}

By exploiting this functionality an unauthenticated attacker could call the destoryContract function and choose where
the ETH of the contract will be transferred to. This is easy to exploit from the attacker's perspective.

Mitigation Use the onlyOwner modifier like it's used in the reset of the functions.
Another more specific solution would be to use a custom ACL mechanism like openzeppelin’s roles ACL that will only
allow specific roles to access the destoryContract functions.

9

User’s Pools are Subjected to MEV Attacks

Contract contracts/ZenPoolUserManager.sol

Risk High

Fixed No - Risk Taken

Found by Manual Testing

Description The main ZenPoolUserManager is handling custom user pools that have been created in the system. The user can call
different actions on these pools if he has the right permissions to do so, a user can also grant access via role
mechanism based on OpenZeppelin’s access control contracts

The ZenPoolUserManager has a proper ACL mechanism, but at the same time, it has 2 functions that are subjected to
front/back running or any MEV attacks.

function destroyContract(address payable addr) external {

selfdestruct(addr);

}

While the business logic itself is right, and seems like it can not do much harm as it has a proper ACL, a user with the
same role could exploit it via MEV attacks.

Mitigation Use the onlyOwner modifier like it’s used in the reset of the functions.
Another more specific solution would be to use a custom ACL mechanism like openzeppelin’s roles ACL that will only
allow specific roles to access the destoryContract functions.

10

Lack of Guardian Mitigation

Contract contracts/ZenGovernorAlpha.sol

Risk Medium

Fixed Fixed

Found by Legacy Code Analysis and Manual Testing

Description During our audit we performed Original Code Analysis, and compared the client’s current codebase to the
open-source projects that the client used to develop the code. If we found changes were made in the open-source
code we took a deeper look at these to make sure they were done wisely.
Most clients consider 3rd party open-source projects secure because they come from major vendors (E.G Uniswap
pool). This assumption is mostly true. However, major security bugs occur when clients perform minor changes in
the code and assume these changes don't affect the overall security of the product.

During our Original Code Analysis, we found that ZenPool uses code from STRIKE protocol in order to create
governance token, the original code from STRIKE repo is:
require(msg.sender == guardian ||

strk.getPriorVotes(proposal.proposer, sub256(block.number, 1)) < proposalThreshold(),

"GovernorAlpha::cancel: proposer above threshold");

While the code in ZenGovernorAlpha is:
require(zen.getPriorVotes(proposal.proposer, sub256(block.number, 1)) < proposalThreshold(),

"ZenGovernorAlpha::cancel: proposer above threshold");

The following statement was removed msg.sender == guardian, this means guardian can not cancel orders if a
threshold is reached. Eliminating the power of guardians can cause very dangerous situations. For instance, if a
compromised proposal that transfers all the contract money to a malicious actor was performed (by a private key

11

hack for example) the threshold protection mechanism is redundant and can’t help, because there is no guardian
that can stop the proposal from happening.

Mitigation Add msg.sender == guardian to the require .

12

Lack of Reenetrancy Guard

Contract contracts/ZenLendingPool.sol

Risk Medium

Fixed Fixed

Found by Slither and Manual Testing

Description The following borrow function does not contain a reentrancy guard nor the checks-effects-interactions pattern, this
is currently not exploitable as the pool only supports ERC20 tokens, but if in the future new ERC-777 will be added a
reentrancy exploit can occur and cause full drawing of contract funds.

function borrow(uint256 borrowAmount) external {

uint256 depositOfZenRequired = calculateDepositOfZenRequired(

borrowAmount

);

require(

_token.balanceOf(address(this)) >= borrowAmount,

"Not enough token balance"

);

zenToken.transferFrom(msg.sender, address(this), depositOfZenRequired);

In addition, the code does not follow the checks-effects-interactions pattern. In this specific case, the require is
checked after some business logic is already implemented, this could cause reentrancy bugs if side effects will be
added before the require.

13

Mitigation Add a reentrancy guard for same function reentrancy and also use the checks-effects-interactions pattern for
complex cross-function reentrancy.

14

Disallow Zero Amount Transfers

Contract contracts/ZenPoolFunds.sol

Risk Low

Fixed Yes

Found by Manual Testing

Description The ZenPoolFunds.sol contract allows zero amount transfers between users. While by itself it is not a security
vulnerability, this is a code sample that can expand the attack vector of a malicious attacker.

The vulnerability exist because transfer on ZenPool emit events, by doing zero amount transfer an attacker could
emit multiple events that can in some scenarios trigger off-chain business logic, without even holding any token in
the pool.

Mitigation A deeper understanding of the business is needed. If possible, remove this functionality.
If there are use cases where it makes sense to use zero amount transfers, implement another layer of checks to
limit the use to the users who are part of this group.

15

Insufficient Logging for Privileged Functions

Contract contracts/ZenGovernorAlpha.sol

Risk Info

Fixed Yes

Found by Manual Testing

Description The following privileged onlyOwner function does not emit events.
Events are a common practice for privileged functions to announce to the public that a change has been made.
Without events, changes are harder to detect and users get surprised by the contract behavior.

The owner can call the chainId by executing setChainId() and modifying the chaindId parameter without any event
being emitted in the process.

function setChainId(uint256 _chainid) external onlyOwner{

uint256 chainId;

chainId = _chainid;

}

Mitigation Add code that emits events.

16

Redundant Condition Checking

Contract contracts/createGovernor.sol

Risk Info

Fixed Yes

Found by Manual Testing

Description When creating a new governor token the _timelockDelay parameter is being validated twice. once in all checks when
the function starts and then as part of another require, this is redundant and should be removed.

require(_timelockDelay > 0, "Time lock delay parameter is 0");

ZenTimelock ZenTimeLock = new ZenTimelock(msg.sender, _timelockDelay);

require(address(ZenTimeLock) != address(0) && _timelockDelay > 0, "Time lock contract

not created");

ZenGovernorAlpha governor = new ZenGovernorAlpha(_governorName, address(ZenTimeLock),

zenTokenAddr, msg.sender, _votingDelay,

_votingPeriod, _proposalThreshold, _votingThreshold);

require(address(governor) != address(0), "Governor Contract not created");

Duplicate code requires more gas to run and can lead to future bugs when the business logic changes.

Mitigation Remove the second redundant require.

17

Naming Inconsistency

Contract - Multiple -

Risk Info

Fixed Risk Taken

Found by Slither and Manual Testing

Description There are multiple occurrences of different styles of capitalizations (lower camel case, snake case etc.).

function deposit_token(...)

function checkEther(...)

function getConfig(...)

function get_batch_user_setting(...)

Mitigation Review the code for the code styling.
Add a code styling guide, and enforce it using a CI task.

18

