
Penetration Testing
Report for Centralized

Exchange

Testers
1. Or Duan
2. Omri Shdaimah

1

Table of Contents
Table of Contents 2

Management Summary 3

Vulnerabilities by Risk 4

Approach 5
Introduction 5
Scope Overview 6
Scope Validation 6
Threat Model 6
Security Evaluation Methodology 7
Security Assessment 7

Security Evaluation 8

Security Assessment Findings 12
Saving Private MPC Keys Insecurely 12
SQL Injection 13
Insecure Direct Object References 15
Weaker Authentication in Alternative Channel 16
Review Webserver Metafiles for Information Leakage 17
Missing Content Security Policy header 17
Testing for Security Headers 19
Review Webserver Metafiles for Information Leakage 20
Fingerprint Web Server 21

Appendix A: Security Evaluation Fixes 22

2

Management Summary

Centralized Exchange team contacted Sayfer in order to perform full blackbox penetration
testing on their web application and whitebox review for their crypto architecture in
December 2021.

Before assessing the above services, we held a kickoff meeting with the Centralized
Exchange technical team and received an overview of the system and the goals for this
research.

Over the research period of 4 weeks, we discovered 10 vulnerabilities in the system. The
most dangerous vulnerabilities were SQL injection and flaws in business logic.

The impact on the system is critical as a malicious attacker could exploit some of these
vulnerabilities to take advantage of the system, either by changing his user role to
“super_user” via the SQL injection or by abusing the system and stealing money from the
Centralized Exchange using the 30s system update mechanism.

3

Vulnerabilities by Risk

Risk Low Medium High Informational

of issues 2 3 3 0

● High – Direct threat to key business processes.
● Medium – Indirect threat to key business processes or partial threat to business

processes.
● Low – No direct threat exists. The vulnerability may be exploited using other

vulnerabilities.
● Informational – This finding does not indicate vulnerability, but states a comment

that notifies about design flaws and improper implementation that might cause a
problem in the long run.

4

Approach

Introduction

The Centralized Exchange team contacted Sayfer in order to perform full grey-box
penetration testing on the Centralized Exchange application, and to perform white-box
security auditing of the Centralized Exchange business logic and code from a
cryptocurrency point of view.

This report documents the research carried out by Sayfer targeting the selected resources
defined under the research scope. Particularly, this report displays the security posture
review for the Centralized Exchange application and code, and its surrounding
infrastructure and process implementations.

Our penetration testing project life cycle:

5

Scope Overview
During our first meeting and after understanding the company's needs, we defined the
application’s scope that resides at the following URLs as the scope of the project:

● █████████████████████
● ████████████████████████████
● ███████████████████████████████████
● ████████████████████████████

Our tests were performed between 21/12/2021 to 17/01/2022

Scope Validation
We began by ensuring that the scope defined to us by the client was technically logical.
Deciding what scope is right for a given system is part of the initial discussion. Getting the
scope right is key to deriving maximum business value from the research.

Threat Model
During our kickoff meetings with the client we defined the most important assets the
application possesses.
We defined that the largest current threat to the system is manipulating the users and
████████ financial assets.

6

Security Evaluation Methodology
Sayfer uses OWASP WSTG as our technical standard when reviewing web applications. After
gaining a thorough understanding of the system we decided which OWASP tests are
required to evaluate the system.

Security Assessment
After understanding and defining the scope, performing threat modeling, and evaluating
the correct tests required in order to fully check the application for security flaws, we
performed our security assessment.

7

https://github.com/OWASP/wstg/tree/f4fdd93e9673c087cfe2472535a808e5cdf938c5

Security Evaluation
The following tests were conducted while auditing the system

Information
Gathering

Test Name

WSTG-INFO-01 Conduct Search Engine Discovery Reconnaissance for Information Leakage

WSTG-INFO-02 Fingerprint Web Server
WSTG-INFO-03 Review Webserver Metafiles for Information Leakage
WSTG-INFO-04 Enumerate Applications on Webserver
WSTG-INFO-05 Review Webpage Content for Information Leakage
WSTG-INFO-06 Identify application entry points
WSTG-INFO-07 Map execution paths through application
WSTG-INFO-08 Fingerprint Web Application Framework
WSTG-INFO-09 Fingerprint Web Application
WSTG-INFO-10 Map Application Architecture

Configuration and
Deploy Management

Testing
Test Name

WSTG-CONF-01 Test Network Infrastructure Configuration
WSTG-CONF-02 Test Application Platform Configuration
WSTG-CONF-03 Test File Extensions Handling for Sensitive Information

WSTG-CONF-04 Review Old Backup and Unreferenced Files for Sensitive Information

WSTG-CONF-05 Enumerate Infrastructure and Application Admin Interfaces
WSTG-CONF-06 Test HTTP Methods
WSTG-CONF-07 Test HTTP Strict Transport Security
WSTG-CONF-08 Test RIA cross domain policy
WSTG-CONF-09 Test File Permission
WSTG-CONF-10 Test for Subdomain Takeover
WSTG-CONF-11 Test Cloud Storage

Identity
Management

Testing
Test Name

WSTG-IDNT-01 Test Role Definitions
WSTG-IDNT-02 Test User Registration Process
WSTG-IDNT-03 Test Account Provisioning Process

WSTG-IDNT-04 Testing for Account Enumeration and Guessable User Account

WSTG-IDNT-05 Testing for Weak or unenforced username policy

8

Authentication
Testing

Test Name

WSTG-ATHN-01 Testing for Credentials Transported over an Encrypted Channel

WSTG-ATHN-02 Testing for Default Credentials
WSTG-ATHN-03 Testing for Weak Lock Out Mechanism
WSTG-ATHN-04 Testing for Bypassing Authentication Schema
WSTG-ATHN-05 Testing for Vulnerable Remember Password
WSTG-ATHN-06 Testing for Browser Cache Weaknesses
WSTG-ATHN-07 Testing for Weak Password Policy
WSTG-ATHN-08 Testing for Weak Security Question Answer

WSTG-ATHN-09 Testing for Weak Password Change or Reset Functionalities

WSTG-ATHN-10 Testing for Weaker Authentication in Alternative Channel

Authorization
Testing

Test Name

WSTG-ATHZ-01 Testing Directory Traversal File Include
WSTG-ATHZ-02 Testing for Bypassing Authorization Schema
WSTG-ATHZ-03 Testing for Privilege Escalation
WSTG-ATHZ-04 Testing for Insecure Direct Object References

Session
Management

Testing
Test Name

WSTG-SESS-01 Testing for Session Management Schema
WSTG-SESS-02 Testing for Cookies Attributes
WSTG-SESS-03 Testing for Session Fixation
WSTG-SESS-04 Testing for Exposed Session Variables
WSTG-SESS-05 Testing for Cross Site Request Forgery
WSTG-SESS-06 Testing for Logout Functionality
WSTG-SESS-07 Testing Session Timeout
WSTG-SESS-08 Testing for Session Puzzling
WSTG-SESS-09 Testing for Session Hijacking

Data Validation
Testing

Test Name

WSTG-INPV-01 Testing for Reflected Cross Site Scripting
WSTG-INPV-02 Testing for Stored Cross Site Scripting
WSTG-INPV-03 Testing for HTTP Verb Tampering
WSTG-INPV-04 Testing for HTTP Parameter Pollution
WSTG-INPV-05 Testing for SQL Injection
WSTG-INPV-06 Testing for LDAP Injection
WSTG-INPV-07 Testing for XML Injection
WSTG-INPV-08 Testing for SSI Injection

9

WSTG-INPV-09 Testing for XPath Injection
WSTG-INPV-10 Testing for IMAP SMTP Injection
WSTG-INPV-11 Testing for Code Injection
WSTG-INPV-12 Testing for Command Injection
WSTG-INPV-13 Testing for Format String Injection
WSTG-INPV-14 Testing for Incubated Vulnerability
WSTG-INPV-15 Testing for HTTP Splitting Smuggling
WSTG-INPV-16 Testing for HTTP Incoming Requests
WSTG-INPV-17 Testing for Host Header Injection
WSTG-INPV-18 Testing for Server-side Template Injection
WSTG-INPV-19 Testing for Server-Side Request Forgery

Error Handling Test Name
WSTG-ERRH-01 Testing for Improper Error Handling
WSTG-ERRH-02 Testing for Stack Traces

Cryptography Test Name
WSTG-CRYP-01 Testing for Weak Transport Layer Security
WSTG-CRYP-02 Testing for Padding Oracle

WSTG-CRYP-03 Testing for Sensitive Information Sent via Unencrypted Channels

WSTG-CRYP-04 Testing for Weak Encryption

Business logic
Testing

Test Name

WSTG-BUSL-01 Test Business Logic Data Validation
WSTG-BUSL-02 Test Ability to Forge Requests
WSTG-BUSL-03 Test Integrity Checks
WSTG-BUSL-04 Test for Process Timing
WSTG-BUSL-05 Test Number of Times a Function Can be Used Limits
WSTG-BUSL-06 Testing for the Circumvention of Work Flows
WSTG-BUSL-07 Test Defenses Against Application Mis-use
WSTG-BUSL-08 Test Upload of Unexpected File Types
WSTG-BUSL-09 Test Upload of Malicious Files

Client Side Testing Test Name
WSTG-CLNT-01 Testing for DOM-Based Cross Site Scripting
WSTG-CLNT-02 Testing for JavaScript Execution
WSTG-CLNT-03 Testing for HTML Injection
WSTG-CLNT-04 Testing for Client Side URL Redirect
WSTG-CLNT-05 Testing for CSS Injection
WSTG-CLNT-06 Testing for Client Side Resource Manipulation
WSTG-CLNT-07 Test Cross Origin Resource Sharing
WSTG-CLNT-08 Testing for Cross Site Flashing
WSTG-CLNT-09 Testing for Clickjacking

10

WSTG-CLNT-10 Testing WebSockets
WSTG-CLNT-11 Test Web Messaging
WSTG-CLNT-12 Testing Browser Storage
WSTG-CLNT-13 Testing for Cross Site Script Inclusion

API Testing Test Name
WSTG-APIT-01 Testing GraphQL

Crypto Wallet
Review

Test Name

SAYFER-CRPTW-01 Test Trade Business Logic
SAYFER-CRPTW-03 Test UTXO-based cryptocurrency node configurations
SAYFER-CRPTW-04 Test account-based cryptocurrency code configurations
SAYFER-CRPTW-05 Test transaction confirmation critical code
SAYFER-CRPTW-06 Test TAPROOT support
SAYFER-CRPTW-07 Test private key storage

11

Security Assessment Findings
Saving Private MPC Keys Insecurely

ID SAYFER-CRPTW-07

Risk High

Required Skill High

OWASP
Reference

-

Location -

Tools Configuration Audit

Description Centralized exchanges suffer from low-quality key management practices. There are
many examples of such cases where the keys were lost or stolen causing the service
to lose all the wallet funds or lock the funds completely.

During our configuration files audit, we went over the key management storage. We
found that the keys that are being used for the cold multi-sig wallet are not stored in
distributed enough places.

There are 3 keys that are being used within the MPC key signing. 1 is stored in a
physical protected machine. The other 2 are stored within the same dedicated
machine in GCP.
There are a couple of security measurements taken to secure these machines but
the problem relies on the distribution, if the machine deployed on GCP gets
compromised, an attacker can sign any transaction from the cold wallet.

This is a high-risk and sensitive place where many have failed in the past, best
practices should be strictly followed.

Mitigations Use 3rd party custodian service to manage hot wallets and vaults. We will be happy
to recommend one of our partners.

These services handle MPC and key management for you, with other added security
layers making the use of such services the best choice for centralized exchanges.

12

SQL Injection

ID WSTG-INPV-05

Risk High

Required Skill Medium

OWASP
Reference

- Link

Location - ██████████████

Tools Burp Repeater, sqlmap, PayloadAllTheThings

Description An SQL injection attack involves inserting or "injecting" a partial or complete SQL
query into the data input that is transmitted from the client to the web application.
A successful SQL injection attack can read sensitive data from the database, modify
database data (insert/update/delete), perform database administration operations
(such as shutting down the DBMS), recover the content of a given file on the DBMS
file system or write files into the file system, and, in some cases, issue commands to
the operating system.

Using the transaction endpoint we were able to abuse the more URL query parameter
to injection malicious SQL payload:
/api/transactions?size=10&more=te');INJECTION_PAYLOAD

The payload we used was:
/api/transactions?size=10&sort=time,DESC&more=te');SELECT+CASE+WHEN+(substring(versio
n(),12,2)+%3d+'10')+THEN+pg_sleep(10)+ELSE+pg_sleep(0)+END%3b - Which in this case,
checks if the running instance of Postgres is version 10 or not.

An attacker that exploits this vulnerability could take over the system. We were able
to extract the table schemas, update our own user’s role or dump any information
saved on the DB and even changed our user’s balance on the DB.

Mitigations SQL injection vulnerability is easy to fix but hard to mitigate. Strong linting or
implementation of compiling rules that enforce future change are needed.

Mitigation of SQL injection vulnerabilities is usually done by following a framework of
choice, which means that the developer should never concatenate strings into a full
SQL statement.

Every user input should be sanitized into an SQL executor rather than being used as
a simple SQL query string.
For more information about SQL injection perfection please refer to the SQL
Injection Prevention CheatSheet.

13

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

Insecure Direct Object References

ID WSTG-ATHZ-04

Risk High

Required
Skill

Medium

OWASP
Reference

LInk

Location - ██████████████████/dashboad/{DASHBOARD_ID}

Tools Burp Repeater, DevTools

Description Insecure direct object references (IDOR) are a type of access control vulnerability that
arises when an application uses user-supplied input to access objects directly. As a
result of this vulnerability, attackers can bypass authorization and access resources in
the system directly, for example, database records or files.

We found that the █████████ API lets an attacker view other users' dashboard
information, including all the financial data of this user.
The vulnerability relies on the dashboard id parameter which is a guessable integer.
Example request for a single dashboard (for a dashboard that is not owned by the
current user):

GET ████/dashboard/827371 HTTP/1.1
Host: ██████████████████
api-key: ██████████
…

That indicates that the /dashboard/DASHBOARD_ID endpoint does not check for
authorization for the requested resource. An authenticated attacker could scrape
every single dashboard which holds information about the user funds and past
transactions.

Mitigation

There are multiple ways to mitigate IDOR vulnerabilities, for this case it seems the
solution might be to check for authorization for each and every request.

This means that every request key will be able to fetch only its account’s dashboards

14

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/04-Testing_for_Insecure_Direct_Object_References.html

Weaker Authentication in Alternative Channel

ID WSTG-ATHN-10

Risk High

Required Skill High

OWASP
Reference

Link

Location ● ██████████████████

Tools Google Chrome, DevTools, amass, ffuf

Description Even if the primary authentication mechanisms does not include any vulnerabilities,
it may be that vulnerabilities exist in alternative legitimate authentication user
channels for the same user accounts.

This vulnerability is part of a chain of 2 vulnerabilities that enabled us to take over
any account with just an email address.

As part of our reconnaissance phase where we try to find a wider attack vector by
enumerating the main target subsystems, we found an admin interface under the
subdomain ██████████████████. It is possible to login into the admin
interface using a normal app user, but for almost all the network requests we
inspected during the loading of the main page, the server returns a 401 error.

[IMAGE_REDACTED]

We reverse-engineered the main.js bundle file which has the front-end code for the
app and found all the potential endpoints an admin can interact with.

We could exploit only the endpoint of api/updateUser. The endpoint enabled us to edit
any user email, and by doing so we were able to reset the victim’s password and take
over the account

[IMAGE_REDACTED]

Mitigations It is highly recommended to make an authentication mechanism or a VPN for
debugging or for the administrative services of the system to prevent the presence
of unsecured public applications that can be exploited by an attacker.

In addition, there is an authorization mechanism in the admin interface, but this is
out of the scope of this project.

15

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/04-Authentication_Testing/10-Testing_for_Weaker_Authentication_in_Alternative_Channel

Review Webserver Metafiles for Information Leakage

ID WSTG-INFO-03

Risk Medium

Required Skill Low

OWASP
Reference

Link

Location ● ████████████████
● █████████████████████████████
● ████████████

Tools Chrome, go buster

Description As part of our research about the target and its sub-domains we found some
metafiles that should not be public, or at least not without the proper authentication
mechanism.

● ████████████████████████.gitignore
● ██████████████████████████████/docker-compose.yml
● ████████████████████████/swagger-ui.html

[IMAGE_REDACTED]

[IMAGE_REDACTED]

[IMAGE_REDACTED]

We found three kinds of files that may harm ████████ services, .gitignore,
swagger-ui and the docker-compose.yml file. These three files reveal sensitive data
about the service architecture. A malicious actor can use this information to increase
his attack vector on the target.

Mitigations If possible, remove these files from the public service or implement an authorization
mechanism that grants access only to privileged users.

16

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage

Missing Content Security Policy header

ID SAYFER-CONFIG-008

Risk Medium

Required Skill High

OWASP
Reference

-

Location -

Tools Burp, Web browser

Description Content Security Policy (CSP) is an added layer of security that helps to detect and
mitigate certain types of attacks, including Cross-Site Scripting (XSS) and data
injection attacks.

We didn't find a CSP header in any of the server’s responses.

[IMAGE_REDACTED]

By using CSP website administrators add another line of defense against XSS or
clickjacking attacks, by doing so the system will be safe even if future unsecured
changes are made to the source code.
A basic CSP policy should at least describe the default whitelisted domains for static
files (like scripts, images, and CSS). And frame-ancestors to prevent clicking-jacking
attacks.

More info:
1. https://cspvalidator.org/
2. https://csp-evaluator.withgoogle.com/

Mitigations

Adding the Content-Security-Policy: [policy] on every response where loading external
resources could be dangerous

We highly recommend using it and testing it first with the “Report-Only” variation to
test your policy before releasing it to production:

Content-Security-Policy-Report-Only: [policy]

17

https://cspvalidator.org/
https://csp-evaluator.withgoogle.com/

Testing for Security Headers

ID SAYFER-CONFIG-009

Risk Medium

Required Skill High

OWASP
Reference

-

Location - ████████████

Tools Burp, Web browser

Description Browsers support many HTTP headers that can improve applications security to
protect against a variety of common attacks, the headers are exchanged between a
web client (usually a browser) and a server to specify the security-related details of
HTTP communication.

When looking at ████████ security headers the following are missing:
● X-Content-Type-Options

Setting this header will prevent the browser from interpreting files as
something other than what is declared by the content type in the HTTP
headers.

● Strict-Transport-Security
HSTS is a web security policy mechanism that helps to protect websites
against protocol downgrade attacks and cookie hijacking. It allows web
servers to declare that web browsers should only interact with it using
secure HTTPS connections, and never via the insecure HTTP protocol.

● Referrer-Policy
The Referer header is a request header that indicates the site from which the
traffic originated. If there is no adequate prevention in place, the URL itself,
and even sensitive information contained in the URL will be leaked to the
cross-origin site.

● Access-Control-Allow-Origin
The header has the value of “*” which exposes the API for every website, this
might not be the desired outcome.

Mitigations Adding the headers mentioned above to all back-end services.

18

Review Webserver Metafiles for Information Leakage

ID WSTG-INFO-03

Risk Low

Required Skill Medium

OWASP
Reference

Link

Location -

Tools DevTools

Description While researching the target with DevTool we were able to view the frontend source
code without any obfuscation. This vulnerability occurs because the JS bundles are
shipped with sourcemaps to production, which make it possible to read the original
source code with comments that might reveal information, for instance, the
following paths.ts file:

█████████████████████/paths.ts

[IMAGE_REDACTED]

By having the sourcemap, an attacker can learn about the code base, read
comments, and find deprecated code parts which later can be used to find
vulnerabilities.

Mitigations Do not ship sourcemaps to production, most logging and error tracing systems have
an opinion to upload the sourcemaps to a back-office system. Another approach
would be to serve the sourcemaps to only authenticated users via VPN or other
mechanisms.

19

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage

Fingerprint Web Server

ID WSTG-INFO-002

Risk Low

Required
Skill

Medium

OWASP
Reference

LInk

Location - ███████████████████████████

Tools Burp

Description While exposed server information in itself is not necessarily a vulnerability, it is
information that can assist attackers in exploiting other vulnerabilities that may exist.
Most of the endpoints are not disclosing any information about the server through
HTTP headers or error pages.

Using the following mal-formed HTTP request we were able to fingerprint an Nginx
server through a 400 response
GET /v2 HTTPMALFORMED/1.1
Host: ██████████████████
Accept: */*

The response body is:
<html>
<head><title>400 Bad Request</title></head>
<body bgcolor="white">
<center><h1>400 Bad Request</h1></center>
<hr><center>nginx 1.14.0</center>
</body>
</html>

Mitigation

There are different ways to obscure web server headers, the most commonly used
methods are:

1. Reverse proxy servers that stand between the global internet and the internal
servers.

2. Configure each web server to strip these headers.

20

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/01-Information_Gathering/02-Fingerprint_Web_Server.html

Appendix A: Security Evaluation Fixes
Will be updated by the Sayfer team after the first revision.

21

